Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biochem Eng Biotechnol ; 172: 157-193, 2020.
Article in English | MEDLINE | ID: mdl-31240347

ABSTRACT

Alkaliphiles are a diverse group of relatively less known microorganisms living in alkaline environments. To thrive in alkaline environments, alkaliphiles require special adaptations. This adaptation may have evolved metabolites which can be useful for biotechnological processes or other applications. In fact, certain metabolites are found unique to alkaliphiles or are effectively produced by alkaliphiles. This probably aroused the interest in metabolites of alkaliphiles. During recent years, many alkaliphilic microbes have been isolated, especially in countries having alkaline environments, like soda lakes. Even if the number of such isolated alkaliphiles is large, their metabolites have not yet been extensively analyzed and exploited. This is expected to come in the years ahead. So far, the focus of interests in metabolites from alkaliphiles falls into categories such as organic acids, ingredients for foodstuffs and cosmetics, antibiotics, and substances which modify properties of other materials used in industry. This chapter deals with biotechnologically important metabolites of alkaliphiles including compatible solutes, biosurfactants, siderophores, carotenoids, exopolysaccharides, and antimicrobial agents. It also covers the promising potential of alkaliphiles as sources of bioplastic raw materials. Moreover, an overview of the patent literature related to alkaliphiles is highlighted. Graphical Abstract.


Subject(s)
Bacteria , Biotechnology , Siderophores , Bacteria/metabolism , Hydrogen-Ion Concentration
2.
Article in English | MEDLINE | ID: mdl-25464089

ABSTRACT

Antifungal lipopeptides produced by an antagonistic bacterium, Paenibacillus ehimensis strain IB-X-b, were purified and analyzed. The acetone extract of the culture supernatant contained an antifungal amphiphilic fraction stainable with ninhydrin on thin layer chromatography. The fraction was further purified with water-methanol extraction followed by a chromatography on a C18-support. The analysis with LC-MS showed presence of two main series of homologous compounds, family of depsipeptides containing a hydroxy fatty acid, three 2,4-diaminobutyric acid (Dab) residues, five hydrophobic amino acids and one Ser/Thr residue, and cyclic lipopeptides of bacillomycin L and fengycin/plipastatin/agrastatin families. The prevailing compounds in this group are bacillomycin L-C15, fengycin/plipastatin A-C16 together with their homologues responsible for the majority of fungal growth inhibition by P. ehimensis IB-X-b.

3.
Microbiol Mol Biol Rev ; 69(2): 306-25, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15944458

ABSTRACT

Dextran is a chemically and physically complex polymer, breakdown of which is carried out by a variety of endo- and exodextranases. Enzymes in many groups can be classified as dextranases according to function: such enzymes include dextranhydrolases, glucodextranases, exoisomaltohydrolases, exoisomaltotriohydrases, and branched-dextran exo-1,2-alpha-glucosidases. Cycloisomalto-oligosaccharide glucanotransferase does not formally belong to the dextranases even though its side reaction produces hydrolyzed dextrans. A new classification system for glycosylhydrolases and glycosyltransferases, which is based on amino acid sequence similarities, divides the dextranases into five families. However, this classification is still incomplete since sequence information is missing for many of the enzymes that have been biochemically characterized as dextranases. Dextran-degrading enzymes have been isolated from a wide range of microorganisms. The major characteristics of these enzymes, the methods for analyzing their activities and biological roles, analysis of primary sequence data, and three-dimensional structures of dextranases have been dealt with in this review. Dextranases are promising for future use in various scientific and biotechnological applications.


Subject(s)
Bacteria/enzymology , Bacteroides/enzymology , Dextranase/metabolism , Dextrans/metabolism , Fungi/enzymology , Dextranase/chemistry , Dextranase/genetics , Dextrans/biosynthesis , Dextrans/chemistry , Glucosidases/metabolism , Glycoside Hydrolases/metabolism , Industrial Microbiology , Models, Molecular , Structure-Activity Relationship
4.
Article in English | MEDLINE | ID: mdl-14581071

ABSTRACT

Bacterial strains in the genus Bacillus were isolated from natural soil samples and screened for production of extracellular dextranases (E.C.3.2.1.11). One strain, determined by 16sRNA analysis as Paenibacillus illinoisensis exhibiting stable dextranase activity, was chosen for further analysis, and the dextranase from it was purified 733-fold using salt and PEG precipitations, two-phase extraction and DEAE-Sepharose chromatography with a total yield of 19%. The purified enzyme had three isoforms, with molecular masses of 76, 89 and 110kDa and isoelectric points of 4.95, 4.2 and 4.0, respectively. The mixture of the three dextranase isoforms has a broad pH optimum around pH 6.8 and a temperature optimum at 50 degrees C. The N-terminal sequence (Ala-Ser-Thr-Gly-Lys) was identical between the isoforms. No sequence homology with the known dextranases in the protein databanks was found.


Subject(s)
Bacillus/enzymology , Dextranase/isolation & purification , Amino Acid Sequence , Bacillus/genetics , Chromatography, Affinity , Chromatography, Ion Exchange , Dextranase/metabolism , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...