Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
2.
Microb Cell Fact ; 22(1): 247, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38053190

ABSTRACT

Photosynthetic cyanobacterial components are gaining great economic importance as prospective low-cost biostimulants for the green synthesis of metal nanoparticles with valuable medical and industrial applications. The current study comprises the biological synthesis of silver nanoparticles (Ag-NPs) using soluble polysaccharides isolated from Spirulina platensis (PSP) as reducing and capping agents. FTIR spectra showed major functional groups of PSP and biogenic silver nanoparticles including O-H, C-H (CH2), C-H (CH3), C=O, amide, and COO- groups. The UV/Vis spectroscopy scan analyses of the extracted PSP showed absorption spectra in the range of 200-400 nm, whereas the biogenic Ag-NPs showed a maximum spectrum at 285 nm. Transmission electron microscopy (TEM) analysis of the synthesized Ag-NPs showed spherical nanoparticles with mean size between 12 and 15.3 nm. The extracted PSP and Ag-NPs exhibited effective cytotoxic activity against Hep-G2 (human hepatocellular carcinoma). The IC50 for PSP and Ag-NPs were 65.4 and 24.5 µg/mL, respectively. Moreover, cell apoptosis assays for PSP and Ag-NPs against the growth of Hep-G2 cells revealed superior growth inhibitory effects of the green synthesized Ag-NPs that encouraged tracing the apoptotic signalling pathway. In conclusion, the current study demonstrated an unprecedented approach for the green synthesis of silver nanoparticles (NPs), using the polysaccharide of Spirulina platensis as reducing and capping agents, with superior anticancer activity against a hepatocellular carcinoma cell line.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Metal Nanoparticles , Humans , Silver/chemistry , Silver/pharmacology , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Carcinoma, Hepatocellular/drug therapy , Prospective Studies , Polysaccharides , Plant Extracts/chemistry , Plant Extracts/pharmacology
3.
ACS Eng Au ; 3(6): 461-476, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38144680

ABSTRACT

Two-dimensional (2D) nanomaterial-MoS2 (molybdenum disulfide) has gained interest among researchers, owing to its exceptional mechanical, biological, and physiochemical properties. This paper reports on the removal of organic dyes and an emerging contaminant, Ciprofloxacin, by a 2D MoS2 nanoflower as an adsorbent. The material was prepared by a green hydrothermal technique, and its high Brunauer-Emmett-Teller-specific area of 185.541m2/g contributed to the removal of 96% rhodamine-B dye and 85% Ciprofloxacin. Various characterizations, such as X-ray diffraction, scanning electron microscopy linked with energy-dispersive spectroscopy, and transmission electron microscopy, revealed the nanoflower structure with good crystallinity. The feasibility and efficacy of 2D MoS2 nanoflower as a promising adsorbent candidate for the removal of emerging pollutants was confirmed in-depth in batch investigations, such as the effects of adsorption time, MoS2 dosages, solution pH, and temperature. The adsorption mechanism was further investigated based on thermodynamic calculations, adsorption kinetics, and isotherm modeling. The results confirmed the exothermic nature of the enthalpy-driven adsorption as well as the fast kinetics and physisorption-controlled adsorption process. The recyclability potential of 2D MoS2 exceeds four regeneration recycles. MoS2 nanoflower has been shown to be an effective organic pollutant removal adsorbent in water treatment.

4.
Plants (Basel) ; 12(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38005689

ABSTRACT

Zirconium (Zr) is one of the toxic metals that are heavily incorporated into the ecosystem due to intensive human activities. Their accumulation in the ecosystem disrupts the food chain, causing undesired alterations. Despite Zr's phytotoxicity, its impact on plant growth and redox status remains unclear, particularly if combined with elevated CO2 (eCO2). Therefore, a greenhouse pot experiment was conducted to test the hypothesis that eCO2 can alleviate the phytotoxic impact of Zr upon oat (Avena sativa) plants by enhancing their growth and redox homeostasis. A complete randomized block experimental design (CRBD) was applied to test our hypothesis. Generally, contamination with Zr strikingly diminished the biomass and photosynthetic efficiency of oat plants. Accordingly, contamination with Zr triggered remarkable oxidative damage in oat plants, with concomitant alteration in the antioxidant defense system of oat plants. Contrarily, elevated levels of CO2 (eCO2) significantly mitigated the adverse effect of Zr upon both fresh and dry weights as well as the photosynthesis of oat plants. The improved photosynthesis consequently quenched the oxidative damage caused by Zr by reducing the levels of both H2O2 and MDA. Moreover, eCO2 augmented the total antioxidant capacity with the concomitant accumulation of molecular antioxidants (e.g., polyphenols, flavonoids). In addition, eCO2 not only improved the activities of antioxidant enzymes such as peroxidase (POX), superoxide dismutase (SOD) and catalase (CAT) but also boosted the ASC/GSH metabolic pool that plays a pivotal role in regulating redox homeostasis in plant cells. In this regard, our research offers a novel perspective by delving into the previously unexplored realm of the alleviative effects of eCO2. It sheds light on how eCO2 distinctively mitigates oxidative stress induced by Zr, achieving this by orchestrating adjustments to the redox balance within oat plants.

5.
ADMET DMPK ; 11(4): 561-572, 2023.
Article in English | MEDLINE | ID: mdl-37937242

ABSTRACT

Background and purpose: Polycaprolactone nanocapsules incorporated with triazole derivatives in the presence and absence of selenium nanoparticles were prepared and evaluated as antiproliferative and anticancer agents. Polycaprolactone nanoparticles were prepared using the emulsion technique. Experimental approach: The prepared capsules were characterized using FT-IR, TEM and DLS measurements. The synthesized triazolopyrimidine derivative in the presence and absence of selenium nanoparticles encapsulated in polycaprolactone was tested for its in vitro antiproliferative efficiency towards human breast cancer cell line (MCF7) and murine fibroblast normal cell line (BALB/3T3) in comparison to doxorubicin as a standard anticancer drug. Key results: The results indicated that encapsulated polycaprolactone with selenium nanoparticles (SeNPs) and triazole-SeNPs were the most potent samples against the tested breast cancer cell line (MCF7). On the other hand, all compounds showed weak or moderate activities towards the tested murine fibroblast normal cell line (BALB/3T3). Conclusion: As the safety index (SI) was higher than 1.0, it expanded the way for newly synthesized compounds to express antiproliferative efficacy against tumour cells. Hence, these compounds may be considered promising ones. However, they should be examined through further in-vivo and pharmacokinetic studies.

6.
Plants (Basel) ; 12(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37687405

ABSTRACT

The extensive and uncontrolled utilization of rare earth elements, like europium (Eu), could lead to their accumulation in soils and biota. Herein, we investigated the impact of Eu on the growth, photosynthesis, and redox homeostasis in barley and how that could be affected by the future CO2 climate (eCO2). The plants were exposed to 1.09 mmol Eu3+/kg soil under either ambient CO2 (420 ppm, aCO2) or eCO2 (620 ppm). The soil application of Eu induced its accumulation in the plant shoots and caused significant reductions in biomass- and photosynthesis-related parameters, i.e., chlorophyll content, photochemical efficiency of PSII, Rubisco activity, and photosynthesis rate. Further, Eu induced oxidative stress as indicated by higher levels of H2O2 and lipid peroxidation products, and lower ASC/DHA and GSH/GSSG ratios. Interestingly, the co-application of eCO2 significantly reduced the accumulation of Eu in plant tissues. Elevated CO2 reduced the Eu-induced oxidative damage by supporting the antioxidant defense mechanisms, i.e., ROS-scavenging molecules (carotenoids, flavonoids, and polyphenols), enzymes (CAT and peroxidases), and ASC-GSH recycling enzymes (MDHAR and GR). Further, eCO2 improved the metal detoxification capacity by upregulating GST activity. Overall, these results provide the first comprehensive report for Eu-induced oxidative phytotoxicity and how this could be mitigated by eCO2.

7.
ACS Omega ; 8(32): 29674-29684, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37599955

ABSTRACT

Graphene oxide (GO) is a conventional yet vital precursor for the synthesis of porous graphene (PG). Several strong oxidizing agents such as potassium permanganate and perchlorates are typically used for oxidization of graphite. However, they expose toxic reactants/products that harm the environment. Therefore, a greener approach is desperately needed to oxidize and exfoliate graphite. This study reports for the first time on successful oxidation of graphite by ferrate(VI) compounds via an encapsulation approach. By further reducing GO prepared from this near green route with vitamin C, PG anticipated by many highly important and expanding areas such as water treatment could be readily achieved. X-ray diffraction (XRD), Fourier transform infrared (FTIR) and UV-vis spectroscopy, and scanning electronic microscopy (SEM) along with energy-dispersive spectroscopy confirmed the high yield of GO from the oxidation of graphite. Raman spectroscopy, XRD, and TEM confirmed the formation of high-quality few-layered PG from the reduction of as-prepared GO. The above results demonstrated the practicality of using encapsulated ferrate(VI) compounds to realize green oxidation of graphite and resolve the paradox about the oxidation capability of ferrate(VI). To further illustrate its potential for the removal of emerging and crucial contaminants from water, as-prepared PG was further examined against the contaminants of methyl orange (MeO) dye and ibuprofen (IBU). Taken together, the results revealed that more than 90% removal efficiency could be achieved at a high PG dosage against MeO and IBU. This ground-breaking greener approach opens the door to risk-free, extensive graphene environmental applications.

8.
Viruses ; 15(7)2023 07 13.
Article in English | MEDLINE | ID: mdl-37515226

ABSTRACT

Influenza B virus (IBV) contributes to substantial influenza-mediated morbidity and mortality, particularly among children. Similar to influenza A viruses (IAV), the hemagglutinin (HA) and neuraminidase (NA) of IBV undergo antigenic drift, necessitating regular reformulation of seasonal influenza vaccines. NA inhibitors, such as oseltamivir, have reduced activity and clinical efficacy against IBV, while M2 channel inhibitors are only effective against IAV, highlighting the need for improved vaccine and therapeutics for the treatment of seasonal IBV infections. We have previously described a potent human monoclonal antibody (hMAb), 1092D4, that is specific for IBV NA and neutralizes a broad range of IBVs. The anti-viral activity of MAbs can include direct mechanisms such as through neutralization and/or Fc-mediated effector functions that are dependent on accessory cells expressing Fc receptors and that could be impacted by potential host-dependent variability. To discern if the in vivo efficacy of 1092D4 was dependent on Fc-effector function, 1092D4 hMAb with reduced ability to bind to Fc receptors (1092D4-LALAPG) was generated and tested. 1092D4-LALAPG had comparable in vitro binding, neutralization, and inhibition of NA activity to 1092D4. 1092D4-LALAPG was effective at protecting against a lethal challenge of IBV in mice. These results suggest that hMAb 1092D4 in vivo activity is minimally dependent on Fc-effector functions, a characteristic that may extend to other hMAbs that have potent NA inhibition activity.


Subject(s)
Influenza A virus , Influenza Vaccines , Influenza, Human , Orthomyxoviridae Infections , Child , Animals , Mice , Humans , Broadly Neutralizing Antibodies , Neuraminidase , Antibodies, Viral , Influenza B virus , Antibodies, Monoclonal/pharmacology , Receptors, Fc , Hemagglutinin Glycoproteins, Influenza Virus
9.
Biotechnol J ; 18(10): e2300093, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37291073

ABSTRACT

In this study, novel crosslinked hydrogels based on chitosan (CS) and carrageenan (CRG) loaded with silver and/or copper nanoparticles (Ag/CuNPs) were prepared through a freeze-drying (thawing) process to be applied in biological applications comprising wound dressing. These hydrogels showed porous interconnected structures. The influence of the used nanoparticles (NPs) on the antibacterial properties of the CS/CRG hydrogels was explored. Antimicrobial results revealed that both CS/CRG/CuNPs, CS/CRG/AgNPs, and CS/CRG/Ag-CuNPs exhibited promising antibacterial and antifungal activity against Escherichia coli, Pseudomonas aeruginosa, Streptococcus mutans, Staphylococcus aureus, Bacillus subtilis, and Candida albicans. Moreover, CS/CRG/AgNPs, CS/CRG/CuNPs, and CS/CRG/Ag-CuNPs hydrogels showed potential antioxidant activity to be 57%, 78%, and 89%, respectively. Furthermore, cytotoxicity results against Vero normal cell line confirmed that all designed hydrogels are safe upon usage. The bimetallic CS/CRG hydrogels showed notably enhanced antibacterial properties among the as-prepared hydrogels allowing them to be a successful material upon being employed in wound dressing applications.


Subject(s)
Chitosan , Metal Nanoparticles , Chitosan/pharmacology , Chitosan/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Carrageenan/pharmacology , Carrageenan/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Escherichia coli
10.
Environ Res ; 232: 116232, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37263471

ABSTRACT

Biochar-supported nanocatalysts emerged as unique materials for environmental remediation. Herein, sugarcane pulp bagasse (SCPB) was wet-impregnated with Cu(NO3)23H2O and Ni(NO3)26H2O, then pyrolyzed at 500 °C, under N2, for 1 h. We specifically focused on sugarcane pulp instead of SCB and biochar materials. The metal nitrate to biomass ratio was set at 0.5, 1, and 2 mmol/g, with Cu/Ni initial ratio = 1. The process provided hierarchically structured porous biochar, topped with evenly dispersed 40 nm-sized CuNi alloy nanoparticles (SCPBB@CuNi). The biochar exhibited an unusual fishing net-like structure induced by nickel, with slits having a length in the 3-12 µm range. Such a fishing net-like porous structure was obtained without any harsh acidic or basic treatment of the biomass. It was induced, during pyrolysis, by the nanocatalysts or their precursors. The CuNi nanoparticles form true alloy as proved by XRD, and are prone to agglomeration at high initial metal nitrate concentration (2 mmol/g). Stepwise metal loading was probed by XPS versus the initial metal nitrate concentration. This is also reflected in the thermal gravimetric analyses. The SCPBB@CuNi/H2O2 (catalyst dose: 0.25 g/L) system served for the catalyzed removal of Malachite Green (MG), Methylene Blue (MB), and Methyl Orange (MO) dyes (concentration = 0.01 mmol/L). Both single and mixed dye solutions were treated in this advanced oxidation process (AOP). The dyes were removed in less than 30 min for MG and 3 h for MB, respectively, but 8 h for MO, therefore showing selectivity for the degradation of MG, under optimized degradation conditions. The catalysts could be collected with a magnet and reused three times, without any significant loss of activity (∼85%). AOP conditions did not induce any nanocatalyst leaching. To sum up, we provide a simple wet impregnation route that permitted to design highly active Fenton-like biochar@CuNi composite catalyst for the degradation of organic pollutants, under daylight conditions.


Subject(s)
Nanoparticles , Saccharum , Hydrogen Peroxide/chemistry , Coloring Agents , Nitrates , Alloys
11.
Microbiol Spectr ; 11(4): e0472822, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37318331

ABSTRACT

Due to antigenic drift and shift of influenza A viruses (IAV) and the tendency to elicit predominantly strain-specific antibodies, humanity remains susceptible to new strains of seasonal IAV and is at risk from viruses with pandemic potential for which limited or no immunity may exist. The genetic drift of H3N2 IAV is specifically pronounced, resulting in two distinct clades since 2014. Here, we demonstrate that immunization with a seasonal inactivated influenza vaccine (IIV) results in increased levels of H3N2 IAV-specific serum antibodies against hemagglutinin (HA) and neuraminidase (NA). Detailed analysis of the H3N2 B cell response indicated expansion of H3N2-specific peripheral blood plasmablasts 7 days after IIV immunization which expressed monoclonal antibodies (MAbs) with broad and potent antiviral activity against many H3N2 IAV strains as well as prophylactic and therapeutic activity in mice. These H3N2-specific B cell clonal lineages persisted in CD138+ long-lived bone marrow plasma cells. These results demonstrate that IIV-induced H3N2 human MAbs can protect and treat influenza virus infection in vivo and suggest that IIV can induce a subset of IAV H3N2-specific B cells with broad protective potential, a feature that warrants further study for universal influenza vaccine development. IMPORTANCE Influenza A virus (IAV) infections continue to cause substantial morbidity and mortality despite the availability of seasonal vaccines. The extensive genetic variability in seasonal and potentially pandemic influenza strains necessitates new vaccine strategies that can induce universal protection by focusing the immune response on generating protective antibodies against conserved targets within the influenza virus hemagglutinin and neuraminidase proteins. We have demonstrated that seasonal immunization with inactivated influenza vaccine (IIV) stimulates H3N2-specific monoclonal antibodies in humans that are broad and potent in their neutralization of virus in vitro. These antibodies also provide protection from H3N2 IAV in a mouse model of infection. Furthermore, they persist in the bone marrow, where they are expressed by long-lived antibody-producing plasma cells. This significantly demonstrates that seasonal IIV can induce a subset of H3N2-specific B cells with broad protective potential, a process that if further studied and enhanced could aid in the development of a universal influenza vaccine.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza, Human , Humans , Animals , Mice , Influenza, Human/prevention & control , Influenza Vaccines/genetics , Hemagglutinins , Influenza A Virus, H3N2 Subtype/genetics , Neuraminidase , Antibodies, Monoclonal , Influenza A Virus, H1N1 Subtype/genetics , Antibodies, Viral , Influenza A virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics
12.
Membranes (Basel) ; 13(6)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37367786

ABSTRACT

The use of biodegradable polyesters derived from green sources and their combination with natural abundantly layered aluminosilicate clay, e.g., natural montmorillonite, meets the requirements for the development of new sustainable, disposable, and biodegradable organic dye sorbent materials. In this regard, novel electrospun composite fibers, based on poly ß-hydroxybutyrate (PHB) and in situ synthesized poly(vinyl formate) (PVF), loaded with protonated montmorillonite (MMT-H) were prepared via electrospinning in the presence of formic acid, a volatile solvent for polymers and a protonating agent for the pristine MMT-Na. The morphology and structure of electrospun composite fibers were investigated through SEM, TEM, AFM, FT-IR, and XRD analyses. The contact angle (CA) measurements showed increased hydrophilicity of the composite fibers incorporated with MMT-H. The electrospun fibrous mats were evaluated as membranes for removing cationic (methylene blue) and anionic (Congo red) dyes. PHB/MMT 20% and PVF/MMT 30% showed significant performance in dye removal compared with the other matrices. PHB/MMT 20% was the best electrospun mat for adsorbing Congo red. The PVF/MMT 30% fibrous membrane exhibited the optimum activity for the adsorption of methylene blue and Congo red dyes.

13.
Int J Biol Macromol ; 239: 124302, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37011750

ABSTRACT

The diagnosis and treatment of many neurological and psychiatric problems depend on establishing simple, inexpensive, and comfortable electrochemical sensors for dopamine (DA) detection. Herein, 2,2,6,6 tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOC) were successfully loaded with silver nanoparticles (AgNPs) and/or graphite (Gr) and crosslinked by tannic acid, producing composites. This study describes a suitable casting procedure for the composite synthesis of TOC/AgNPs and/or Gr for the electrochemical detection of dopamine. Electrochemical impedance spectra (EIS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the TOC/AgNPs/Gr composites. In addition, the direct electrochemistry of electrodes treated with the prepared composites was examined using cyclic voltammetry. The TOC/AgNPs/Gr composite-modified electrode improved electrochemical performance towards detecting dopamine compared to TOC/Gr-modified electrodes. Upon employing amperometric measurement, our electrochemical instrument has a wide linear range (0.005-250 µM), a low limit of detection (0.0005 µM) at S/N = 3, and a high sensitivity (0.963 µA µM-1 cm-2). Additionally, it was demonstrated that DA detection seemed to have outstanding anti-interference characteristics. The proposed electrochemical sensors meet the clinical criteria regarding reproducibility, selectivity, stability, and recovery. The straightforward electrochemical method utilized in this paper may provide a potential framework for creating dopamine quantification biosensors.


Subject(s)
Cellulose, Oxidized , Graphite , Metal Nanoparticles , Dopamine , Metal Nanoparticles/chemistry , Reproducibility of Results , Limit of Detection , Silver/chemistry , Graphite/chemistry , Electrochemical Techniques/methods , Electrodes
14.
Elife ; 122023 03 21.
Article in English | MEDLINE | ID: mdl-36942851

ABSTRACT

To address the ongoing SARS-CoV-2 pandemic and prepare for future coronavirus outbreaks, understanding the protective potential of epitopes conserved across SARS-CoV-2 variants and coronavirus lineages is essential. We describe a highly conserved, conformational S2 domain epitope present only in the prefusion core of ß-coronaviruses: SARS-CoV-2 S2 apex residues 980-1006 in the flexible hinge. Antibody RAY53 binds the native hinge in MERS-CoV and SARS-CoV-2 spikes on the surface of mammalian cells and mediates antibody-dependent cellular phagocytosis and cytotoxicity against SARS-CoV-2 spike in vitro. Hinge epitope mutations that ablate antibody binding compromise pseudovirus infectivity, but changes elsewhere that affect spike opening dynamics, including those found in Omicron BA.1, occlude the epitope and may evade pre-existing serum antibodies targeting the S2 core. This work defines a third class of S2 antibody while providing insights into the potency and limitations of S2 core epitope targeting.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2 , Antibodies , Epitopes , Antibodies, Viral , Antibodies, Neutralizing , Mammals
15.
AMB Express ; 13(1): 6, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36648547

ABSTRACT

Fusarium crown and foot rot, caused by F. solani f. sp. cucurbitae, are major fungal diseases affecting zucchini and other cucurbits. Despite the efficacy of synthetic fungicides, their health and environmental hazards have highlighted the urgent need for safer alternatives, such as phytochemical-based biocides. Owing to the upregulation of the plant secondary metabolism under stressful conditions, bioprospecting in harsh environments could reveal ore plants for bioactive metabolites. In this study, thirteen wild plants were collected from their natural habitat in a semiarid environment (Yanbu, Saudi Arabia) and extracted to obtain phenolics rich extracts. Total polyphenols, flavonoids, antioxidant capacities and the antifungal activities of the extracts against a pathogenic isolate of F. solani were assessed. Fusarium solani was isolated from infected zucchini and characterized by scanning electron microscopy. Hierarchical clustering analysis of the phytochemical screening and in vitro bioactivity revealed that Rosmarinus officinalis, Pulicaria crispa, Achillea falcata and Haloxylon salicornicum were the richest in polyphenols and the most powerful against F. solani. Further, the extracts of these four plants significantly decreased the disease incidence in zucchini, where P. crispa was the premier. Interestingly, results of transmission electron microscopy revealed that extract of P. crispa, as a representative of the powerful group, induced ultrastructural disorders in fungal cells. Therefore, this study suggests the use of R. officinalis, P. crispa, A. falcata and H. salicornicum grown in semi-arid environments as ore plants to develop phytochemical-based biocides against Fusarium crown and foot rot.

16.
Waste Manag ; 155: 179-191, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36379167

ABSTRACT

The conversion processes of sugarcane into direct-consumption sugar and juice are generating a tremendous amount of waste, the so-called sugarcane bagasse (SCB). Biochar preparation is among the practical solutions aiming to manage and valorize SCB into high added-value functional material (FM). Herein, we propose a novel zero-waste pathway to fabricate two FMs from one biomass. The SCB was first macerated and ultrasonicated to obtain the natural extract that served as bio-reducing medium. Then, the H2O/EtOH-extracted SCB was in-situ impregnated with a bimetallic solution of copper and silver nitrates. The process produced an intermediate composite (FM0), Ag/Cu-Ag+/Cu2+-loaded SCB which was carbonized to elaborate Ag/Cu-Biochar (FM1), free Ag/Cu nanoparticles (FM2) were obtained by microwaving the residual liquid waste. FM1 exhibited high catalytic activity for the total Fenton-like degradation of methylene blue. The experimental data followed the pseudo-first and the pseudo-second order rate laws with apparent degradation rate constants K1 45 10-3 min-1 and K2 0.115 g.mg-1.min-1, respectively. FM0, FM1 and FM2 were tested as new anti-kinetoplastid materials against two flagellated protozoans namely the Leishmania spp and the Trypanosoma cruzi. Notably, Ag/Cu (FM2) showed exceptional leishmanicidal and trypanocidal effects with IC50 values of 2.909 ± 0.051, 3.580 ± 0.016 and 3.020 ± 0.372 ppm for L.donovani, L. amazonensis and Trypanosoma cruzi, respectively. In this way, we combine green chemistry and agrowaste valorization in a full zero-waste process, to address the 3rd (indicator 3.3.5) and 6th (indicator 6.3.1) United Nations sustainable development goals, ″Good Health and Well-Being″ and ″Clean Water and Sanitation″.


Subject(s)
Saccharum , Cellulose , Charcoal
17.
Biometals ; 35(3): 601-616, 2022 06.
Article in English | MEDLINE | ID: mdl-35359198

ABSTRACT

In this study, a novel, non-toxic, eco-friendly zinc oxide nanoparticles (ZnO-NPs) was used instead of the synthetic fungicides widely used to control the destructive phytopathogenic fungus Fusarium oxysporum, the causative agent of wilt disease in Solanum melongena L. Herein, the biosynthesized ZnO-NPs was carried out by Penicillium expansum ATCC 7861. In vitro, mycosynthesized ZnO-NPs exhibited antifungal activity against Fusarium oxysporum. In vivo, ZnO-NPs suppressed Fusarium wilt disease in cultivated Solanum melongena L. by decreasing the disease severity with 75% of plant protection. Moreover, ZnO-NPs stimulated the recovery of eggplant as an indicated by improving of morphological and metabolic indicators including plant height(152.5%), root length(106.6%), plant fresh biomass (146%), chlorophyll a (102.8%), chlorophyll b (67.86%), total soluble carbohydrates (48.5%), total soluble protein (81.8%), phenol (10.5%), antioxidant activity and isozymes compared with infected control. Therefore, this study suggests using mycosynthesized ZnO-NPs as an alternative to synthetic fungicides not only to eradicate the Fusarium wilt disease in cultivated eggplant (Solanum melongena) but also to promote the growth parameters and metabolic aspects.


Subject(s)
Fungicides, Industrial , Fusarium , Nanoparticles , Solanum melongena , Zinc Oxide , Chlorophyll A , Fungicides, Industrial/pharmacology , Solanum melongena/microbiology , Zinc Oxide/pharmacology
18.
Sci Total Environ ; 817: 152985, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35026249

ABSTRACT

Emerging contaminants continue to pose a threat to environmental quality that warrant mitigation. Novel technologies are being investigated that offer promise in their removal, yet it is important that the environmental costs of these treatments do not overshadow their benefits. With sustainability a key priority in global infrastructure development, insights into the environmental impact of new technologies is necessitated. In the present work, the environmental burden of three novel GBM (graphene-based material) filters (porous graphene, graphene oxide-based foam and hybrid combination) are quantified and compared at a flow rate of 1 m3/d by way of life cycle impact assessment with an alternative solution, an AOP-PPT (advanced oxidation process by pulsed power treatment). Initial results demonstrated negligible differences in overall environmental impact between the three GBM filter formats (7.7-7.9 pt), while significant asymmetry was observed with the AOP-PPT that incurred a total impact score of 67.9 pt. This disparity was attributed to the high energy demand of the AOP-PPT that was a key predictor of environmental cost in an India context due to the high proportion of non-renewable energy sourced. The GBM filters were also considered at a range of breakthrough times and contrasted against the AOP-PPT. Results showed that differences between GBM filters were negligible at all breakthrough periods and that multiple breakthroughs a day would be required before the AOP-PPT became environmentally favourable. Finally, due to the AOP-PPT affording inclusive disinfection, the environmental burden of a GBM filter was compared under different scenarios of incorporated disinfection. The total impact of the AOP-PPT achieving full disinfection was found to be 242.5 pt compared to only 26.8 pt for the GBM filter coupled with UV254 (ultraviolet 254 nm) treatment and 13.9 pt when incorporating chlorination/de-chlorination. These findings should support sustainable development goals when combating prevailing emerging contaminants in municipal wastewater.


Subject(s)
Graphite , Water Pollutants, Chemical , Water Purification , Disinfection , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods
19.
Chemosphere ; 287(Pt 1): 131990, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34454218

ABSTRACT

The aim of the present study is developing a magnetic nanoscale zero-valent iron/zeolite (nZVI/Z) composite towards the efficient removal of ammonia-nitrogen (NH4+-N) from aqueous solutions. Series of batch experiments were conducted to investigate the effect of different factors on the removal efficiency, including pH effect, aerobic/anaerobic, NH4+-N initial concentration, and temperature. The mixing mass ratio of nZVI/Z was optimized to reach the optimal ratio (0.25 g nZVI: 0.75 g zeolite), corresponding to the best removal efficiency of 85.7% after 120 min of reaction. Results revealed that nZVI/Z is efficient for NH4+-N removal from water at a wide pH range (3.0-10.0), with superiority to the neutral conditions. Moreover, aerobic ambient and normal temperature of 25 °C were the optimal conditions for the removal process of NH4+-N. Removal mechanisms involved electrostatic attraction, ion exchange, and adsorption. Generally, nZVI/Z has great potential towards the practical applications of NH4+-N removal from water.


Subject(s)
Water Pollutants, Chemical , Zeolites , Adsorption , Ammonia , Iron , Nitrogen , Water Pollutants, Chemical/analysis
20.
Sensors (Basel) ; 21(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201852

ABSTRACT

This review critically summarizes the knowledge of imprinted polymer-based electrochemical sensors for the detection of pesticides, metal ions and waterborne pathogenic bacteria, focusing on the last five years. MIP-based electrochemical sensors exhibit low limits of detection (LOD), high selectivity, high sensitivity and low cost. We put the emphasis on the design of imprinted polymers and their composites and coatings by radical polymerization, oxidative polymerization of conjugated monomers or sol-gel chemistry. Whilst most imprinted polymers are used in conjunction with differential pulse or square wave voltammetry for sensing organics and metal ions, electrochemical impedance spectroscopy (EIS) appears as the chief technique for detecting bacteria or their corresponding proteins. Interestingly, bacteria could also be probed via their quorum sensing signaling molecules or flagella proteins. If much has been developed in the past decade with glassy carbon or gold electrodes, it is clear that carbon paste electrodes of imprinted polymers are more and more investigated due to their versatility. Shortlisted case studies were critically reviewed and discussed; clearly, a plethora of tricky strategies of designing selective electrochemical sensors are offered to "Imprinters". We anticipate that this review will be of interest to experts and newcomers in the field who are paying time and effort combining electrochemical sensors with MIP technology.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Electrochemical Techniques , Electrodes , Limit of Detection , Polymers , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...