Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 242: 112698, 2023 May.
Article in English | MEDLINE | ID: mdl-37001363

ABSTRACT

Sulphate-reducing bacteria wreaks havoc to oil pipelines, as it is an active agent for scale formation in the oil production tubing, and plugging of reservoir rock around the oil wells, and this leads to the degradation of oil quality. In this work, we synthesized copper oxide/titanium dioxide nanocomposite photocatalysts with three different mass contents of copper oxide (10%, 20% and 30%) and used them as an effective photo-catalyst in the process of photo-catalytic deactivation of sulphate-reducing bacteria. The anchoring of copper oxide on titanium dioxide brought about the following positive attributes in copper oxide/titanium dioxide nanocomposite pertained to the photo-catalyst: (i) the material transformed to visible light active with the potential to harness the more efficient visible spectral region of the solar radiation, (ii) increased surface area on the photo-catalyst enhanced the number of active reaction sites in the material, and (iii) efficiently retarded the undesired photo-generated electron hole recombination to promote the photo-catalytic activity. Although, the photo-catalyst effective under both UV and visible light, the deactivation was found to be higher in visible radiation, particularly the nanocomposite with 20%- copper oxide on titanium dioxide showed the highest photocatalytic degradation with of Sulphate-reducing bacteria with a decay constant as high as 1.38 min -1 and the total depletion time as low as 8 min. It was confirmed that the bacterial deactivation was neither due to the bactericidal effect of the nanocomposite nor due to the light mediated deactivation.


Subject(s)
Copper , Nanocomposites , Ultrasonics , Light , Titanium , Bacteria , Oxides , Sulfates , Catalysis
2.
Arab J Sci Eng ; 48(1): 1-11, 2023.
Article in English | MEDLINE | ID: mdl-36185592

ABSTRACT

The initially developed vaccines were relying mostly on attenuation and inactivation of pathogens. The use of recombinant DNA technology allows the targeting of immune responses focused against a few protective antigens. The conventional recombination methods for generating vaccines are time-consuming, laborious, and less efficient. To overcome these limitations, a new precise CRISPR/Cas9 with high efficacy, specificity, and low-cost properties has solved a lot of current problems of recombinant vaccines that intrigued the inspiration for novel recombinant vaccine development. CRISPR/Cas9 system was discovered as a bacterial adaptive immune system. In the domain of virology, CRISPR/Cas9 is used to engineer the virus genome to understand the fundamentals of viral pathogenesis, gene therapy, and virus-host interactions. One step ahead CRISPR/Cass9 bypassed the vaccine to precisely engineer the B-cells to secrete the specific antibodies against deadly viral pathogens. There is a critical literature review gap especially in the use of CRISPR/Cas9 to generate recombinant vaccines against viral diseases and its prospective application to engineering the B-cells in immunocompromised people. This review heights the application of CRISPR/Cas9 compared to conventional approaches for the development of recombinant vaccine vectors, editing the genes of B-cells, and challenges that need to be overcome. The factors affecting CRISPR/Cas9-edited recombinant vaccines and prospects in the context of viral genome editing for the development of vaccines will be discussed.

3.
Int J Mol Sci ; 23(3)2022 Jan 30.
Article in English | MEDLINE | ID: mdl-35163528

ABSTRACT

During the fracture stimulation of oil and gas wells, fracturing fluids are used to create fractures and transport the proppant into the fractured reservoirs. The fracturing fluid viscosity is responsible for proppant suspension, the viscosity can be increased through the incorporation of guar polymer and cross-linkers. After the fracturing operation, the fluid viscosity is decreased by breakers for efficient oil and gas recovery. Different types of enzyme breakers have been engineered and employed to reduce the fracturing fluid's viscosity, but thermal stability remains the major constraint for the use of enzymes. The latest enzyme engineering approaches such as direct evolution and rational design, have great potential to increase the enzyme breakers' thermostability against high temperatures of reservoirs. In this review article, we have reviewed recently advanced enzyme molecular engineering technologies and how these strategies could be used to enhance the thermostability of enzyme breakers in the upstream oil and gas industry.


Subject(s)
Enzymes/chemistry , Enzymes/metabolism , Protein Engineering/methods , Enzyme Stability , Oil and Gas Fields/chemistry , Oil and Gas Industry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...