Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Neurol ; 16(11): 908-916, 2017 11.
Article in English | MEDLINE | ID: mdl-28958801

ABSTRACT

BACKGROUND: Better understanding and prediction of progression of Parkinson's disease could improve disease management and clinical trial design. We aimed to use longitudinal clinical, molecular, and genetic data to develop predictive models, compare potential biomarkers, and identify novel predictors for motor progression in Parkinson's disease. We also sought to assess the use of these models in the design of treatment trials in Parkinson's disease. METHODS: A Bayesian multivariate predictive inference platform was applied to data from the Parkinson's Progression Markers Initiative (PPMI) study (NCT01141023). We used genetic data and baseline molecular and clinical variables from patients with Parkinson's disease and healthy controls to construct an ensemble of models to predict the annual rate of change in combined scores from the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) parts II and III. We tested our overall explanatory power, as assessed by the coefficient of determination (R2), and replicated novel findings in an independent clinical cohort from the Longitudinal and Biomarker Study in Parkinson's disease (LABS-PD; NCT00605163). The potential utility of these models for clinical trial design was quantified by comparing simulated randomised placebo-controlled trials within the out-of-sample LABS-PD cohort. FINDINGS: 117 healthy controls and 312 patients with Parkinson's disease from the PPMI study were available for analysis, and 317 patients with Parkinson's disease from LABS-PD were available for validation. Our model ensemble showed strong performance within the PPMI cohort (five-fold cross-validated R2 41%, 95% CI 35-47) and significant-albeit reduced-performance in the LABS-PD cohort (R2 9%, 95% CI 4-16). Individual predictive features identified from PPMI data were confirmed in the LABS-PD cohort. These included significant replication of higher baseline MDS-UPDRS motor score, male sex, and increased age, as well as a novel Parkinson's disease-specific epistatic interaction, all indicative of faster motor progression. Genetic variation was the most useful predictive marker of motor progression (2·9%, 95% CI 1·5-4·3). CSF biomarkers at baseline showed a more modest (0·3%, 95% CI 0·1-0·5) but still significant effect on prediction of motor progression. The simulations (n=5000) showed that incorporating the predicted rates of motor progression (as assessed by the annual change in MDS-UPDRS score) into the final models of treatment effect reduced the variability in the study outcome, allowing significant differences to be detected at sample sizes up to 20% smaller than in naive trials. INTERPRETATION: Our model ensemble confirmed established and identified novel predictors of Parkinson's disease motor progression. Improvement of existing prognostic models through machine-learning approaches should benefit trial design and evaluation, as well as clinical disease monitoring and treatment. FUNDING: Michael J Fox Foundation for Parkinson's Research and National Institute of Neurological Disorders and Stroke.


Subject(s)
Parkinson Disease/genetics , Parkinson Disease/physiopathology , Cohort Studies , Female , Humans , Male , Parkinson Disease/diagnosis
2.
PLoS Comput Biol ; 7(3): e1001105, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21423713

ABSTRACT

Tumor necrosis factor α (TNF-α) is a key regulator of inflammation and rheumatoid arthritis (RA). TNF-α blocker therapies can be very effective for a substantial number of patients, but fail to work in one third of patients who show no or minimal response. It is therefore necessary to discover new molecular intervention points involved in TNF-α blocker treatment of rheumatoid arthritis patients. We describe a data analysis strategy for predicting gene expression measures that are critical for rheumatoid arthritis using a combination of comprehensive genotyping, whole blood gene expression profiles and the component clinical measures of the arthritis Disease Activity Score 28 (DAS28) score. Two separate network ensembles, each comprised of 1024 networks, were built from molecular measures from subjects before and 14 weeks after treatment with TNF-α blocker. The network ensemble built from pre-treated data captures TNF-α dependent mechanistic information, while the ensemble built from data collected under TNF-α blocker treatment captures TNF-α independent mechanisms. In silico simulations of targeted, personalized perturbations of gene expression measures from both network ensembles identify transcripts in three broad categories. Firstly, 22 transcripts are identified to have new roles in modulating the DAS28 score; secondly, there are 6 transcripts that could be alternative targets to TNF-α blocker therapies, including CD86--a component of the signaling axis targeted by Abatacept (CTLA4-Ig), and finally, 59 transcripts that are predicted to modulate the count of tender or swollen joints but not sufficiently enough to have a significant impact on DAS28.


Subject(s)
Arthritis, Rheumatoid/genetics , Gene Expression , Abatacept , Antirheumatic Agents/therapeutic use , Computer Simulation , Gene Expression Profiling , Humans , Immunoconjugates/therapeutic use , Interleukins/genetics , Interleukins/metabolism , Sphingosine N-Acyltransferase/genetics , Sphingosine N-Acyltransferase/metabolism , Tumor Necrosis Factor-alpha/therapeutic use
3.
Mol Syst Biol ; 3: 84, 2007.
Article in English | MEDLINE | ID: mdl-17299420

ABSTRACT

The current dogma of G(1) cell-cycle progression relies on growth factor-induced increase of cyclin D:Cdk4/6 complex activity to partially inactivate pRb by phosphorylation and to sequester p27(Kip1)-triggering activation of cyclin E:Cdk2 complexes that further inactivate pRb. pRb oscillates between an active, hypophosphorylated form associated with E2F transcription factors in early G(1) phase and an inactive, hyperphosphorylated form in late G(1), S and G(2)/M phases. However, under constant growth factor stimulation, cells show constitutively active cyclin D:Cdk4/6 throughout the cell cycle and thereby exclude cyclin D:Cdk4/6 inactivation of pRb. To address this paradox, we developed a mathematical model of G(1) progression using physiological expression and activity profiles from synchronized cells exposed to constant growth factors and included a metabolically responsive, activating modifier of cyclin E:Cdk2. Our mathematical model accurately simulates G(1) progression, recapitulates observations from targeted gene deletion studies and serves as a foundation for development of therapeutics targeting G(1) cell-cycle progression.


Subject(s)
G1 Phase/genetics , Models, Biological , Systems Biology/methods , Animals , Cyclin E , Cyclin-Dependent Kinase 2 , Humans , Intercellular Signaling Peptides and Proteins/pharmacology , Mammals
4.
FEBS Lett ; 579(8): 1878-83, 2005 Mar 21.
Article in English | MEDLINE | ID: mdl-15763567

ABSTRACT

An important challenge facing researchers in drug development is how to translate multi-omic measurements into biological insights that will help advance drugs through the clinic. Computational biology strategies are a promising approach for systematically capturing the effect of a given drug on complex molecular networks and on human physiology. This article discusses a two-pronged strategy for inferring biological interactions from large-scale multi-omic measurements and accounting for known biology via mechanistic dynamical simulations of pathways, cells, and organ- and tissue level models. These approaches are already playing a role in driving drug development by providing a rational and systematic computational framework.


Subject(s)
Computational Biology , Drug Design , Algorithms , Animals , Gene Expression Profiling , Humans , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...