Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 28(12): 7460-7471, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34867051

ABSTRACT

The discovery of novel biocontrol agents requires the continuous scrutiny of native microorganisms to ensure that they will be useful on a regional scale. The goal of the present work was to discover novel antagonistic bacteria against Fusarium oxysporum ff. spp. lycopersici race 3 (Fol R3) and radicis-lycopersici (Forl) causing Fusarium wilt disease and Fusarium crown and root rot of tomatoes, respectively. High-throughput liquid antagonism screening of 1,875 rhizospheric bacterial strains followed by dual confrontation assays in 96-well plates was used to select bacteria exhibiting > 50% fungal growth inhibition. In a second dual confrontation assay in 10-cm Petri dishes, bacteria showing > 20% Fol R3 or Forl growth inhibition were further screened using a blood hemolysis test. After discarding ß-hemolytic bacteria, a seedling antagonistic assay was performed to select five potential antagonists. A phylogenetic analysis of 16S rRNA identified one strain as Acinetobacter calcoaceticus (AcDB3) and four strains as members of the genus Bacillus (B. amyloliquefaciens BaMA26, Bacillus siamensis BsiDA2, B. subtilis BsTA16 and B. thuringiensis BtMB9). Greenhouse assays demonstrated that BsTA16 and AcDB3 were the most promising antagonists against Fol R3 and Forl, respectively. Pathogen biocontrol and growth promotion mechanisms used by these bacteria include the production of siderophores, biofilm, proteases, endoglucanases and indole acetic acid, and phosphate solubilization. These five bacteria exerted differential responses on pathogen control depending on the tomato hybrid, and on the growth stage of tomatoes. We report for the first time the use of an Acinetobacter calcoaceticus isolate (AcDB3) to control Forl in tomato under greenhouse conditions.

2.
Biomed Res Int ; 2014: 430581, 2014.
Article in English | MEDLINE | ID: mdl-25133161

ABSTRACT

Present study was carried out for the microbiological evaluation of allogeneic bone processed from femoral heads. A total 60 bacterial isolates comprising five different species including Streptococcus spp., Staphylococcus spp., Klebsiella spp., Bacillus spp., and Pseudomonas spp. were characterized based on their cultural and biochemical characteristics. Average bioburden was ranged from 5.7 × 10(1) to 3.9 × 10(4) cfu/gm. The majority (81.7%) of the microbial contaminants were detected as Gram positive with the predominant organism being skin commensal coagulase negative Staphylococci (43.3%). Antimicrobial resistance was evaluated by the activities of 14 broad and narrow spectrum antibiotic discs. Comparing the overall pattern, marked resistance was noted against Penicillin and Amoxicillin 100% (60/60). The most effective single antibiotics were Gentamicin, Tobramycin, and Ofloxacin which were bactericidal against 100% (60/60) isolates. Multidrug resistance (MDR) was confirmed in 70% (42/60) of the samples. Among them, the most prevalent antibiotypes were Penicillin, Amoxicillin, Oxacillin, Polymyxin, and Cefpodoxime (80% of total MDR). The study results revealed higher contamination rate on bone allografts and recommend the implementation of good tissue banking practices during tissue procurement, processing, and storage in order to minimize the chances of contamination.


Subject(s)
Bacteria/isolation & purification , Bone Banks , Bone Transplantation , Bone and Bones/microbiology , Drug Resistance, Multiple, Bacterial , Bacterial Load , Humans , Microbial Sensitivity Tests , Transplantation, Homologous
SELECTION OF CITATIONS
SEARCH DETAIL
...