Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 122: 110654, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37459783

ABSTRACT

Vinpocetine (Vinpo) is a neuroprotective vasodilator drug. It is an effective therapeutic agent for a variety of cerebrovascular and cognitive disorders. However, its potential protective efficacy on intestinal ischemia/reperfusion (I/R) injury remains elusive. The present study aimed to investigate the effect of Vinpo on intestinal I/R injury and to explore its modulatory effect on sirtuin (SIRT1)/ Suppressor of cytokine signaling (SOCS3)/ Signal Transducer and Activator of Transcription (STAT3) signaling. Twenty-four male Wistar albino rats were randomly allocated into four groups. G1 (sham): rats were subjected to surgical stress without I/R, GII (I/R): rats were subjected to 60 min/2-h I/R, GIII (Vinpo + I/R): rats were pre-treated with Vinpo (20 mg/kg/day, P.O. daily) for 2 weeks before intestinal I/R; GIV (EX527 + Vinpo + I/R): rats received both Vinpo (20 mg/kg/day, P.O.) and EX527 (5 mg/kg, once every 2 days, i.p) for 2 weeks before intestinal I/R. The current results showed that Vinpo improved the intestinal histopathological picture, enhanced M1 to M2 macrophage polarization and alleviated the I/R-induced increase in interleukins (IL-6, IL-1ß), tumor necrosis factor (TNF-α), inducible nitric oxide synthase (i-NOS), and nitric oxide (NO). Additionally, Vinpo pretreatment upregulated SIRT1 mRNA expression/protein level and SOCS3 mRNA expression while downregulating P-STAT3 immunoreactivity. The effects of Vinpo were attenuated by the SIRT1 inhibitor EX527. We concluded that Vinpo ameliorated the intestinal I/R injury and enhanced M2 anti-inflammatory macrophage polarization through modulation of SIRT1/SOCS3/STAT3/i-NOS cascade.


Subject(s)
Reperfusion Injury , Sirtuins , Rats , Male , Animals , Sirtuin 1/metabolism , Sirtuins/metabolism , Rats, Wistar , Signal Transduction , Suppressor of Cytokine Signaling Proteins/genetics , Reperfusion Injury/metabolism , Tumor Necrosis Factor-alpha/metabolism , Macrophages/metabolism , RNA, Messenger , Ischemia
2.
Int Immunopharmacol ; 119: 110269, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37148771

ABSTRACT

Rebamipide (Reba) is a well-known gastroprotective agent. However, its potential protective efficacy against intestinal ischemia/reperfusion (I/R)-induced liver injury remains elusive. Therefore, this study aimed to assess the modulatory effect of Reba on SIRT1/ß-catenin/FOXO1-NFκB signaling cascade. Thirty-two male Wistar albino rats were randomized into four groups: G1 (sham): rats were subjected to surgical stress without I/R, GII (I/R): rats were subjected to 60 min/4-h I/R, GIII (Reba + I/R): rats received Reba 100 mg/kg/day, p.o. for three weeks, then were subjected to 60 min/4-h I/R, and GIV (Reba + EX527 + I/R): rats received Reba (100 mg/kg/day p.o.) + EX527 (10 mg/kg/day, ip) for three weeks before I/R. Reba pretreatment decreased the serum levels of ALT and AST, improved I/R-induced histological alterations of both intestine and liver, increased hepatic Silent information regulator 1 (SIRT1) expression/content, ß-catenin expression/immunoreactivity, and FOXO1 expression, while suppressed NF-κB p65 expression/protein content. In addition, Reba increased hepatic total antioxidant capacity (TAC), while suppressed malondialdehyde (MDA), tumor necrosis factor (TNFα), and caspase-3 activity. Furthermore, Reba inhibited BAX expression, while upregulated Bcl-2 expression. Reba exhibited a plausible protective effect against intestinal I/R-mediated liver injury by modulating SIRT1/ß-catenin/FOXO1-NFκB signaling mechanisms.


Subject(s)
NF-kappa B , Reperfusion Injury , Animals , Rats , Male , NF-kappa B/metabolism , Sirtuin 1/metabolism , beta Catenin/metabolism , Rats, Wistar , Liver/pathology , Intestines/pathology , Reperfusion Injury/metabolism , Ischemia/metabolism , Reperfusion
3.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36422526

ABSTRACT

Acute kidney injury is a heterogeneous set of disorders distinguished by a sudden decrease in the glomerular filtration rate, which is evidenced by an increase in the serum creatinine concentration or oliguria and categorized by stage and cause. It is an ever-growing health problem worldwide, with no reliable treatment. In the present study, we evaluated the role of Clitoria ternatea combined with mesenchymal stem cells in treating cisplatin-induced acute kidney injury in rats. Animals were challenged with cisplatin, followed by 400 mg/kg of Asian pigeonwing extract and/or mesenchymal stem cells (106 cells/150 g body weight). Kidney functions and enzymes were recorded, and histopathological sectioning was also performed. The expression profile of IL-1ß, IL-6, and caspase-3 was assessed using the quantitative polymerase chain reaction. The obtained data indicated that mesenchymal stem cells combined with the botanical extract modulated the creatinine uric acid and urea levels. Cisplatin increased the level of malondialdehyde and decreased the levels of both superoxide dismutase and glutathione; however, the dual treatment was capable of restoring the normal levels. Furthermore, all treatments modulated the IL-6, IL-1ß, and caspase-3 gene expression profiles. The obtained data shed some light on adjuvant therapy using C. ternatea and mesenchymal stem cells in treating acute kidney injury; however, further investigations are required to understand these agents' synergistic mechanisms fully. The total RNA was extracted from the control, the positive control, and all of the therapeutically treated animals. The expression profiles of the IL-6, IL-1ß, and caspase-3 genes were evaluated using the real-time polymerase chain reaction. Cisplatin treatment caused a significant upregulation in IL-6. All treatments could mitigate the IL-6-upregulating effect of cisplatin, with the mesenchymal stem cell treatment being the most effective. The same profile was observed in the IL-1ß and caspase-3 genes, except that the dual treatment (mesenchymal stem cells and the botanical extract) was the most effective in ameliorating the adverse effect of cisplatin; it downregulated caspase-3 expression better than the positive control.

4.
Can J Physiol Pharmacol ; 99(7): 708-719, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33201734

ABSTRACT

N-acetylcysteine (NAC) and melatonin were reported to exert protective effects on testicular tissues. Thus, this study aimed to determine which of these is more efficient against obesity-induced testicular dysfunction in albino rats. A total of 32 adult male rats (195 ± 10 g) were divided into four groups: control, obese rats fed a high-fat diet (HFD), HFD+NAC (150 mg/kg per day, i.p.) and HFD+melatonin (10 mg/kg per day, i.p.), for 5 weeks. Testes and epididymis were weighed. Lipid profile, pituitary-testicular hormones, tumor necrosis factor α (TNFα), epididymal sperm parameters, testicular oxidant-antioxidant system, testicular and the epididymal histopathology and immunohistochemical localization for androgen receptors (AR) and Bax reaction were analyzed. Administration of NAC or melatonin significantly improved the lipid parameters, gonadal hormones, TNFα level, sperm count and abnormal morphology, oxidant-antioxidant system and the absolute testicular and epididymal mass with an enhancement of testicular architecture, AR expression and apoptosis as compared with that in the obese group. Additionally, as compared with the NAC group, the melatonin group had significantly reduced body mass index, total cholesterol, triglyceride, and TNFα and increased testosterone, sperm count, motility, superoxide dismutase activity, mitigated histomorphometrical changes, Bax expression, and increased testicular AR expression. Therefore, melatonin was more efficient than NAC in affording fortification against HFD-induced testicular dysfunction.


Subject(s)
Acetylcysteine , Melatonin , Testis , Animals , Epididymis , Male , Oxidative Stress , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...