Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(17)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34502606

ABSTRACT

Planetary gearboxes are the key components of large equipment, such as wind turbines, shield machines, etc. The operating state of the planetary gearbox is related to the safety of the equipment as a whole, and its feature extraction technology is essential. In assessing the problem of the non-stationarity of the current signal under variable speed conditions and the difficulty of evaluating the operating state of the planetary gearbox under a tacholess condition, a three-phase current, variable-speed tacholess envelope order analysis method is proposed. Firstly, a tacholess rotation speed estimation is completed by extracting the trend term of the instantaneous frequency of the asynchronous motor's three-phase currents. The motor slip rate is assumed to be constant. Then, the envelope order analysis signal is obtained by re-sampling in the angular domain. Finally, the features of the envelope order signal are extracted, and a linear discriminant analysis (LDA) algorithm is used to fuse multiple indexes to generate a comprehensive feature reflecting the operating status of the planetary gearbox. The results of the simulation analysis and experimental verification show that the proposed method is effective in evaluating the operating state of the planetary gearbox under variable speed conditions. Compared with the traditional time-frequency ridge extraction method, the tacholess speed estimation method can improve the instantaneous speed estimation accuracy. The comprehensive index of envelope order completes the planetary gearbox state identification process, and a 95% classification accuracy rate is achieved.

2.
Neural Plast ; 2021: 3965385, 2021.
Article in English | MEDLINE | ID: mdl-33552154

ABSTRACT

Mental fatigue is a common psychobiological state elected by prolonged cognitive activities. Although, the performance and the disadvantage of the mental fatigue have been well known, its connectivity among the multiareas of the brain has not been thoroughly studied yet. This is important for the clarification of the mental fatigue mechanism. However, the common method of connectivity analysis based on EEG cannot get rid of the interference from strong noise. In this paper, an adaptive feature extraction model based on stacked denoising autoencoder has been proposed. The signal to noise ratio of the extracted feature has been analyzed. Compared with principal component analysis, the proposed method can significantly improve the signal to noise ratio and suppress the noise interference. The proposed method has been applied on the analysis of mental fatigue connectivity. The causal connectivity among the frontal, motor, parietal, and visual areas under the awake, fatigue, and sleep deprivation conditions has been analyzed, and different patterns of connectivity between conditions have been revealed. The connectivity direction under awake condition and sleep deprivation condition is opposite. Moreover, there is a complex and bidirectional connectivity relationship, from the anterior areas to the posterior areas and from the posterior areas to the anterior areas, under fatigue condition. These results imply that there are different brain patterns on the three conditions. This study provides an effective method for EEG analysis. It may be favorable to disclose the underlying mechanism of mental fatigue by connectivity analysis.


Subject(s)
Brain/physiopathology , Electroencephalography/methods , Mental Fatigue/physiopathology , Nerve Net/physiopathology , Adult , Female , Humans , Male , Signal-To-Noise Ratio , Sleep Deprivation/physiopathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...