Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 84(12): 3676-3688, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34928835

ABSTRACT

Industrialization has induced tremendous environmental problems, particularly surface and underground water pollution by harmful heavy metals. In this work, we attempt to eliminate simultaneously iron and cadmium from aqueous solutions by adsorption on Algerian Bentonite. This abundant material was used without any modification. The sorption mechanism was investigated, and effects of pH, initial adsorbate and adsorbent concentrations were studied. The kinetics study revealed that equilibrium was reached after 120 min for both metals, and maximal adsorbed quantities of cadmium (76 mg/g) and iron (55 mg/g ) were obtained at pH = 10 and 8 respectively. Different kinetic models were tested, such as pseudo first-order, pseudo second-order, film and intraparticle diffusion models. The pseudo second-order model fits well the experimental data. Biot number values (2-39) show that the simultaneous sorption process is controlled by film diffusion due to electrostatic interactions between negatively charged surface and cations, then by the internal diffusion and formation of bonds between cations and adsorbent constituents. Also, compared to iron, the high and rapid sorption of cadmium reflects the selective nature of the sorption process. These results show that raw bentonite could be used without further treatment as an efficient sorbent for heavy metal mixtures.


Subject(s)
Bentonite , Metals, Heavy
2.
J Hazard Mater ; 164(2-3): 1179-84, 2009 May 30.
Article in English | MEDLINE | ID: mdl-18977072

ABSTRACT

Soil contamination with petroleum hydrocarbons has caused critical environmental and health defects and increasing attention has been paid for developing innovative technology for cleaning up this contamination. In this work, the washing process of a soil column by ionic surfactant sodium dodecyl sulfate (SDS) was investigated. Water flow rate and the contamination duration (age) have been studied. The performance of water in the removal of diesel fuel was found to be non-negligible, while water contributed by 24.7% in the global elimination of n-alkanes. The effect of SDS is significant beyond a concentration of 8mM. After 4h of treatment with surfactant solution, the diesel soil content remains constant, which shows the existence of a necessary contact time needed to the surfactant to be efficient. The soil washing process at a rate of 3.2 mL/min has removed 97% of the diesel fuel. This surfactant soil remediation process was shown to be governed by the first-order kinetics. These results are of practical interest in developing effective surfactant remediation technology of diesel fuel contaminated soils.


Subject(s)
Environmental Restoration and Remediation/methods , Gasoline , Sodium Dodecyl Sulfate/chemistry , Soil Pollutants/isolation & purification , Kinetics , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...