Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 60(27): 8239-8247, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34612920

ABSTRACT

In this paper, we introduce the idea of using unmanned aerial vehicle (UAV)-based free-space optical communication systems to backhaul high-speed trains. We introduce a composite channel model that includes effects of both atmospheric turbulence and pointing errors due to position/orientation deviation. Based on the derived fading model, we present an approximation expression for the outage probability. The performances of the proposed air-relay and traditional ground-relay systems are compared under fair conditions. Pointing-acquisition-tracking (PAT) complexity and coverage distance under different weather conditions and different fading levels are considered as comparison metrics. Furthermore, we investigate the effect of several parameters such as beam divergence angle, displacement deviation variance, and UAV operation altitude on system performance. Our results reveal that air relay helps in mitigating the fog effect, can achieve longer coverage distance, and relaxes PAT system design.

2.
Appl Opt ; 60(15): 4291-4298, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34143115

ABSTRACT

Data offloading is a promising low-cost and power-efficient solution for the expected high demands for high-speed connectivity in the near future. We investigate offloading efficiency in a cellular/light fidelity (LiFi) network. This offloading efficiency is a measure of the ratio of traffic carried by the LiFi network to the total traffic carried by both LiFi and cellular networks. We consider the two scenarios of opportunistic and delayed offloading. Effects of user density, user mobility, LiFi-signal blocking, and channel characteristics are investigated. We use Zemax to simulate LiFi channels in the proposed model. Based on our results, delayed offloading can achieve up to 60% offloading efficiency while opportunistic offloading achieves up to 18% offloading efficiency.

3.
Appl Opt ; 59(7): 1896-1906, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32225706

ABSTRACT

In this paper, we introduce the idea of using adaptive hybrid modulation techniques to overcome channel fading effects on visible light communication (VLC) systems. A hybrid $ M $M-ary quadrature-amplitude modulation ($ M{\rm QAM} $MQAM) and multipulse pulse-position modulation (MPPM) technique is considered due to its ability to make gradual changes in spectral efficiency to cope with channel effects. First, the Zemax optics studio simulator is used to simulate dynamic VLC channels. The results of Zemax show that Nakagami and log-normal distributions give the best fitting for simulation results. The performance of $ M{\rm QAM} $MQAM-MPPM is analytically investigated for both Nakagami and log-normal channels, where we obtain closed-form expressions for the average bit-error rate (BER). The optimization problem of evaluating the hybrid modulation technique settings that lead to the highest spectral efficiency under a specific channel status and constraint of outage probability is formulated and solved using an exhaustive search. Our results reveal that the adaptive hybrid scheme improves system spectral efficiency compared to ordinary QAM and MPPM schemes. Our results reveal that the adaptive hybrid scheme improves system spectral efficiency compared to ordinary QAM and MPPM schemes. Specifically, at low average transmitted power, $ - 32\;{\rm dBm} $-32dBm, the adaptive hybrid scheme shows 280% improvement in spectral efficiency compared to adaptive versions of ordinary schemes. At higher power, $ - 20\;{\rm dBm} $-20dBm, 6.5% and 725% improvement are obtained compared to ordinary QAM and ordinary MPPM, respectively. Also, the adaptive hybrid scheme shows great improvement in average BER and outage probability compared to ordinary schemes. The hybrid scheme shows 28%, 34%, and 38% improvement, respectively, for $ m = 1,2,3 $m=1,2,3 for Nakagami channels at $ {\rm BER}{ = 10^{ - 3}} $BER=10-3. Also, the outage probability of hybrid schemes of $ {\rm BER}{ = 10^{ - 3}} $BER=10-3 shows 30% and 14% better performance than ordinary $ M{\rm QAM} $MQAM and MPPM schemes, respectively.

4.
Appl Opt ; 58(36): 9757-9767, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31873616

ABSTRACT

A hybrid optical modulation approach is described, which layers a continuous wave $M$M-ary differential phase-shift keying ($M{\rm DPSK}$MDPSK) and a two-level ($2L$2L) multipulse pulse-position modulation (MPPM) intensity-modulated signal for improved spectral efficiency. These $2L$2L techniques are a generalization of earlier hybrid MPPM-$M{\rm DPSK}$MDPSK techniques and have the added advantage of reducing transmitter and detector complexities over previous hybrid modulation approaches. The spectral and power efficiencies for the proposed $2L$2L-MPPM-$M{\rm DPSK}$MDPSK modulation techniques are formulated and shown to have the highest spectral efficiency in comparison to other hybrid techniques with lower implementation complexity. The performance of the proposed $2L$2L hybrid techniques is quantified over free-space optical (FSO) networks as well as fiber networks and verified using Monte Carlo simulation. For FSO channels, the proposed $2L$2L-MPPM-$M{\rm DPSK}$MDPSK technique outperforms the traditional MPPM-$M{\rm DPSK}$MDPSK scheme by approximately 2 dB at a bit-error rate (BER) of ${10^{-4}}$10-4 and a spectral efficiency of 2.5 bit/s/Hz. Similarly, in optical fiber, the proposed scheme relaxes the impact of nonlinearity in comparison to traditional MPPM-$M{\rm DPSK}$MDPSK. Specifically, at a ${\rm BER}{=10^{-3}}$BER=10-3, the $2L$2L-MPPM-$M{\rm DPSK}$MDPSK technique outreaches the MPPM-$M{\rm DPSK}$MDPSK by 2000 km at a spectral efficiency of 2.5 bit/s/Hz and an average transmit power of $-{3}\,\,{\rm dBm}$-3dBm.

SELECTION OF CITATIONS
SEARCH DETAIL
...