Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Publication year range
1.
Dig Dis Sci ; 40(12): 2540-8, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8536509

ABSTRACT

The prevention of cholelithiasis by dietary manipulation was investigated in hamsters receiving a fat-free lithogenic (L) diet or this diet in which sucrose was replaced by 12 (group AS12), 36 (group AS36), 48 (group AS48), or 72.5% (group AS72.5) of autoclaved amylomaize starch for seven weeks. All hamsters (6/6) had cholesterol gallstones in groups L and AS12, while only 3/6 hamsters in group AS36 had gallstones. None were present in groups AS48 and AS72.5. Except in group AS12, biliary cholesterol level and lithogenic index (LI) decreased significantly in hamsters receiving amylomaize starch. Plasma cholesterol concentration was reduced by 31 and 54%, respectively, in groups AS48 and AS72.5 as compared to group L. The concentration of esterified cholesterol in the liver was also reduced significantly in all groups receiving amylomaize starch. Hepatic cholesterogenesis was decreased by 74 and 65%, respectively, in groups AS48 and AS72.5 as compared to group L. The transformation of cholesterol to bile acids was increased in group AS72.5 (+152%) as compared to L, while fecal cholesterol excretion was strongly lowered (-31%). Amylomaize starch reduced the microbial transformation of cholesterol to coprosterol and epicoprosterol, and in group AS72.5 it decreased the degradation of cholic acid. Thus, this autoclaved amylomaize starch, which could be used in human nutrition, prevents cholelithiasis and lowers cholesterolemia.


Subject(s)
Cholelithiasis/prevention & control , Cholesterol/metabolism , Diet , Hypercholesterolemia/prevention & control , Starch/administration & dosage , Animals , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , Cholelithiasis/chemistry , Cholelithiasis/metabolism , Cholesterol/analysis , Cricetinae , Hypercholesterolemia/metabolism , Liver/metabolism , Male , Mesocricetus
2.
Biochemistry ; 34(33): 10421-31, 1995 Aug 22.
Article in English | MEDLINE | ID: mdl-7654696

ABSTRACT

In cultured human and rat cells, the lipolysis-stimulated receptor (LSR), when activated by free fatty acids (FFA), mediates the binding of apoprotein B- and apoprotein E-containing lipoproteins and their subsequent internalization and degradation. To better understand the physiological role of LSR, we developed a biochemical assay that optimizes both the activation and binding steps and, thus, allows the estimation of the number of LSR binding sites expressed in the livers of living animals. With this technique, a strong inverse correlation was found in rats between the apparent number of LSR binding sites in liver and the postprandial plasma triglyceride concentration (r = -0.828, p < 0.001, n = 12). No correlation existed between the number of LSR and plasma triglycerides measured in the same animals after 24 h of fasting. The same membrane binding assay was used to elucidate the mechanism by which FFA induce lipoprotein binding to LSR. The LSR activation step was mediated by direct interaction of FFA with LSR candidate proteins of apparent molecular masses of 115 and 90 kDa and occurred independently of the membrane lipid environment. The FFA-induced conformational shift that revealed the lipoprotein binding site remained fully reversible upon removal of the FFA. However, occupancy of the site by the apoprotein ligand stabilized the active form of LSR. Comparison of the effect of different FFA alone or in combination indicated that the same binding site is revealed by different FFA and that the length and saturation of the FFA monomeric carbon chain are critical in determining the potency of the FFA activating effect. We propose that the LSR pathway represents a limiting step for the cellular uptake of intestinally derived triglyceride-rich lipoproteins and speculate that FFA liberated by lipolysis initiate this process by altering the conformation of LSR to reveal the lipoprotein binding site.


Subject(s)
Receptors, LDL/physiology , Receptors, Lipoprotein/physiology , Animals , Binding Sites , Binding, Competitive , Cell Membrane/metabolism , Cells, Cultured , Fatty Acids, Nonesterified/pharmacology , Humans , Kinetics , Lactoferrin/pharmacology , Lipoproteins, LDL/metabolism , Liver/metabolism , Male , Oleic Acid , Oleic Acids/pharmacology , Phospholipids/pharmacology , Proteoglycans/pharmacology , Rats , Rats, Sprague-Dawley , Triglycerides/blood , Trypsin/pharmacology
3.
J Biol Chem ; 270(29): 17068-71, 1995 Jul 21.
Article in English | MEDLINE | ID: mdl-7615497

ABSTRACT

Adenovirus vector-mediated transfer of the receptor-associated protein (RAP) gene into low density lipoprotein (LDL) receptor-deficient mice was shown to achieve plasma concentrations ranging between 20 and 200 micrograms/ml and to result in the accumulation of remnant lipoproteins (Willnow, T. E., Sheng, Z., Ishibashi, S., and Herz, J. (1994) Science 264, 1471-1474). Both this finding and the observation that in addition to various other members of the LDL receptor gene family, RAP binds to a yet unidentified protein of apparent molecular mass of 105 kDa prompted us to examine the effect of high concentrations of RAP on the lipolysis-stimulated receptor (LSR). LSR is a receptor distinct from the LDL receptor and the LDL receptor-related protein and is capable of binding apoB and apoE when activated by free fatty acids. Data reported here show that in fibroblasts isolated from a subject homozygous for familial hypercholesterolemia, RAP fusion protein inhibited LSR-mediated binding of 125I-LDL and the subsequent internalization and degradation of the particles. Studies on the interaction of RAP with LSR in isolated rat liver membranes revealed that at concentrations > or = 10 micrograms/ml, RAP inhibited in a dose-dependent manner the binding of LDL to LSR; half-maximum inhibition was obtained with 20 micrograms/ml RAP. Ligand blotting studies revealed that RAP bound directly to two rat liver membrane proteins of apparent molecular masses identical to those that bind 125I-LDL after preincubation with oleate. However, unlike LDL, binding of 125I-RAP to LSR did not require preincubation with oleate. Preincubation of nitrocellulose membranes with an excess of unlabeled RAP fusion protein decreased oleate-induced binding of 125I-LDL to LSR candidate proteins, whereas preincubation with excess unlabeled LDL was unable to prevent the subsequent binding of 125I-RAP to the LSR proteins. Both the latter data and analysis of the mechanism of inhibition were consistent with the RAP inhibitory effect on LSR being achieved by interference with a site distinct from the oleate-induced LDL binding site. In conclusion, this study shows that at concentrations reported to delay chylomicron remnant removal in LDL receptor-deficient mice, RAP exerted a significant inhibitory effect on LSR.


Subject(s)
Carrier Proteins/pharmacology , Glycoproteins/pharmacology , Receptors, LDL/antagonists & inhibitors , Animals , Carrier Proteins/metabolism , Cells, Cultured , Glycoproteins/metabolism , Humans , LDL-Receptor Related Protein-Associated Protein , Lipoproteins, LDL/metabolism , Molecular Weight , Rats , Recombinant Proteins/pharmacology
4.
Diabete Metab ; 21(2): 121-6, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7621972

ABSTRACT

It has been widely accepted that the remnants of the intestinally-derived lipoprotein chylomicrons, i.e., chylomicron remnants (CMR), are cleared from the circulation by a receptor genetically distinct from the well-known LDL-receptor. This second receptor was initially considered as a receptor specific for apo E, in contrast to the LDL-receptor, which binds both apo B and apoE. This article critically examines the current dogma of the putative CMR receptor, as well as both supporting and conflicting evidence for the recently-proposed identity of this receptor with the LDL-receptor related protein (LRP). Next, we introduce the lipolysis-stimulated receptor, LSR, which bears all the biochemical characteristics of the CMR receptor. In addition, the apparent number of LSR expressed in the liver is inversely correlated with nonfasting levels of plasma triglycerides. A change in LSR expression and parallel inverse change in plasma triglycerides is observed in rats treated with hyperlipidemic (retinoic acid) or hypolipidemic (fish oil in MaxEPA) agents, indicating that LSR represents a definite target for pharmacological management of hyperlipidemia. In support of this notion is the observation that MaxEPA, which causes an increase in LSR expression, also reduces both plasma triglyceride and cholesterol levels in the thus far intractable homozygous Watanabe heritable hyperlipidemic rabbit.


Subject(s)
Chylomicrons , Receptors, LDL/analysis , Receptors, Lipoprotein/analysis , Animals , Humans , Low Density Lipoprotein Receptor-Related Protein-1 , Receptors, Immunologic/analysis
5.
C R Seances Soc Biol Fil ; 189(5): 899-904, 1995.
Article in French | MEDLINE | ID: mdl-8673635

ABSTRACT

This article critically examines the concept of the putative chylomicron remnant receptor (CMR). The molecular nature of this second lipoprotein receptor remains disputed. Indeed, two proteins, the low density lipoprotein receptor-related protein (LRP) and the lipolysis stimulated receptor (LSR) have been proposed as candidates for this function. The LRP bears significant structural homology with the LDL receptor and mediates the internalisation of beta-VLDL enriched with apo E. In addition, LRP binds several ligands not related to the lipoprotein system. Thus, LRP's contribution to the clearance of CMR has been questioned. The precise biochemical structure of LSR remains unclear. However, a series of observations support the hypothesis that LSR is the CMR receptor. LSR, which is activated by free fatty acis (FFA), the products of lipolysis, is present in primary cultures of rat hepatocytes. It displays the highest affinity for triglyceride-rich lipoproteins and is inhibited by lactoferrin. The existence of a strong inverse correlation in rats between the apparent number of hepatic LSR and the plasma triglyceride concentration measured in the post-prandial state, indicate that LSR represents a rate-limiting step for the removal of triglyceride-rich lipoproteins. Moreover, the ability of MAXEPA to enhance the expression of LSR in parallel with its well documented hypotriglyceridemic effect indicates that, contrary to popular belief, the putative CMR receptor represents a target for pharmacological management of hyperlipidemia.


Subject(s)
Chylomicrons/metabolism , Intestinal Mucosa/metabolism , Liver/metabolism , Humans , Low Density Lipoprotein Receptor-Related Protein-1 , Metabolic Clearance Rate , Receptors, Immunologic/metabolism , Receptors, LDL/metabolism
6.
Lipids ; 28(3): 181-8, 1993 Mar.
Article in English | MEDLINE | ID: mdl-8464348

ABSTRACT

The effect of increasing amounts of a cyclic oligosaccharide, beta-cyclodextrin (BCD), included in the diet on plasma cholesterol and triglycerides, was investigated in two animal models, namely in male genetically hypercholesterolemic Rico rats and in male Syrian hamsters. The distribution of bile acids in the gastrointestinal tract and in the feces of hamsters was also determined. In the Rico rats and hamsters, plasma cholesterol and triglycerides decreased linearly with increasing doses of BCD. In these two species, 20% BCD as compared to control diet lowered cholesterolemia (-35%) and triglyceridemia (-70%). In the hamster, the BCD diet caused a marked decrease in cholesterol and triglycerides in chylomicrons and very low density lipoprotein, and in high density lipoproteins cholesterol. Composition and amounts of bile acids were modified in the gastrointestinal tract of hamsters receiving 10% BCD as compared to the control group. The total bile acid content of the gallbladder of treated hamsters was fourfold higher than in the control group, and the bile contained a large amount of hydrophilic bile acids. This trend was also observed in the small intestine, in which percentages and total quantities of cholic plus deoxycholic acids (cholic pathway) were higher than those of chenodeoxycholic plus ursodeoxycholic plus lithocholic acids (chenodeoxycholic pathway). The bile acid contents of the cecum and colon of treated hamsters were 2.7-fold higher than those of control animals, but the bile acid composition was similar in the two groups of hamsters.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cholesterol/blood , Cyclodextrins/pharmacology , Hypercholesterolemia/metabolism , Triglycerides/blood , Animals , Bile Acids and Salts/chemistry , Body Weight/drug effects , Chenodeoxycholic Acid/metabolism , Cholesterol/deficiency , Cholic Acids/metabolism , Cricetinae , Dose-Response Relationship, Drug , Feces/chemistry , Hypercholesterolemia/genetics , Intestines/chemistry , Lipoproteins/blood , Male , Mesocricetus , Organ Size/drug effects , Rats , Rats, Mutant Strains , Triglycerides/deficiency
7.
J Hepatol ; 17(3): 364-72, 1993 Mar.
Article in English | MEDLINE | ID: mdl-8315264

ABSTRACT

The metabolism and time-courses of urinary and fecal excretions of murideoxycholic acid (MDCA; 3 alpha,6 beta-dihydroxy-5 beta-cholanoic acid), a 6 beta-hydroxylated bile acid, was investigated in man. The study was carried out in two groups of subjects. Six cholecystectomized patients fitted with a cystic duct drain ingested 100 mg of a tracer dose of 3H-MDCA. Time-course of radioactivity in plasma was then followed for an 8-h period. Biliary, urinary and fecal excretions of radioactivity were measured for a 5-day period and excreted MDCA metabolites were identified. Five lithiasic patients with intact enterohepatic circulation ingested 500 mg of the same tracer dose of 3H-MDCA. Radioactivity in plasma was followed for a 49-h period and urinary and fecal excretions of radioactivity were measured daily for 7 days. In the first group, the excretion of the radioactivity by the three routes (bile+urine+feces) reached 97.8 +/- 1.5% of the ingested dose but dropped to 75 +/- 8.3% (urine+feces) in patients in the second group. In cholecystectomized patients, the estimation of intestinal MDCA absorption was dependent on cystic duct drain flow rate and gave values ranging from 20% to 87%. The biological half-life of MDCA in lithiasic patients averaged 3.4 +/- 0.7 days. Radioactivity appeared in the plasma in the first hour and reached a maximum 6 and 3 h after the beginning of the experiment in group I and II respectively. In the second group, another peak of radioactivity in plasma was observed just after breakfast.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cholelithiasis/metabolism , Deoxycholic Acid/metabolism , Adult , Aged , Aged, 80 and over , Bile/metabolism , Biotransformation/physiology , Cholecystectomy , Cholelithiasis/drug therapy , Deoxycholic Acid/urine , Feces/chemistry , Female , Humans , Kinetics , Male , Middle Aged , Tritium
8.
Br J Nutr ; 66(3): 479-92, 1991 Nov.
Article in English | MEDLINE | ID: mdl-1772872

ABSTRACT

By using the isotopic equilibrium method in the young male Syrian hamster, the rates of cholesterol turnover processes, i.e. dietary cholesterol absorption, cholesterol synthesis, cholesterol excretion in the faeces and urine and cholesterol transformation into bile acids, were determined in the hamster receiving a control (C) or a lithogenic diet (L) for 7 weeks. At the end of this period the gall bladder of all animals in group L contained cholesterol gallstones. The coefficient of dietary cholesterol absorption was reduced by 26%, cholesterol synthesis and cholesterol faecal excretion were twofold higher in group L than in group C. Bile acid content in the small intestine was diminished in group L, but bile acid composition was similar in the two groups. The increase in cholesterogenesis in lithiasic animals essentially took place in the liver. Bile acid biosynthesis did not significantly differ in the two groups, but represented only 35% of total cholesterol input (dietary absorption + internal secretion) in group L v. 52% in group C. Thus, in the lithiasic hamster, hepatic synthesis of cholesterol and bile acids are not coupled. The molar percentage of cholesterol in bile was twofold higher in group L than in group C but those of bile acids and of phospholipids were not modified. In the lithiasic hamster the specific activity of biliary cholesterol was similar to that in plasma and liver. Consequently, biliary cholesterol does not derive directly from cholesterol newly synthesized in the liver but from hepatic cholesterol rapidly exchangeable with plasma cholesterol.


Subject(s)
Bile Acids and Salts/metabolism , Cholelithiasis/metabolism , Cholesterol/metabolism , Animals , Body Weight , Cholesterol, Dietary/metabolism , Cricetinae , Intestinal Absorption/physiology , Intestinal Mucosa/metabolism , Lipid Metabolism , Male , Mesocricetus , Phospholipids/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...