Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Syst Biol ; 9: 23, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-26033487

ABSTRACT

BACKGROUND: Understanding the mechanisms by which hundreds of diverse cell types develop from a single mammalian zygote has been a central challenge of developmental biology. Conrad H. Waddington, in his metaphoric "epigenetic landscape" visualized the early embryogenesis as a hierarchy of lineage bifurcations. In each bifurcation, a single progenitor cell type produces two different cell lineages. The tristable dynamical systems are used to model the lineage bifurcations. It is also shown that a genetic circuit consisting of two auto-activating transcription factors (TFs) with cross inhibitions can form a tristable dynamical system. RESULTS: We used gene expression profiles of pre-implantation mouse embryos at the single cell resolution to visualize the Waddington landscape of the early embryogenesis. For each lineage bifurcation we identified two clusters of TFs - rather than two single TFs as previously proposed - that had opposite expression patterns between the pair of bifurcated cell types. The regulatory circuitry among each pair of TF clusters resembled a genetic circuit of a pair of single TFs; it consisted of positive feedbacks among the TFs of the same cluster, and negative interactions among the members of the opposite clusters. Our analyses indicated that the tristable dynamical system of the two-cluster regulatory circuitry is more robust than the genetic circuit of two single TFs. CONCLUSIONS: We propose that a modular hierarchy of regulatory circuits, each consisting of two mutually inhibiting and auto-activating TF clusters, can form hierarchical lineage bifurcations with improved safeguarding of critical early embryogenesis against biological perturbations. Furthermore, our computationally fast framework for modeling and visualizing the epigenetic landscape can be used to obtain insights from experimental data of development at the single cell resolution.


Subject(s)
Embryonic Development , Models, Biological , Transcription Factors/metabolism , Animals , Blastocyst/cytology , Blastocyst/metabolism , Gene Expression Profiling , Mice , Single-Cell Analysis
2.
Stem Cells ; 29(12): 1933-41, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21997905

ABSTRACT

A major goal of regenerative medicine is to produce cells to participate in the generation, maintenance, and repair of tissues that are damaged by disease, aging, or trauma, such that function is restored. The establishment of induced pluripotent stem cells, followed by directed differentiation, offers a powerful strategy for producing patient-specific therapies. Given how laborious and lengthy this process can be, the conversion of somatic cells into lineage-specific stem/progenitor cells in one step, without going back to, or through, a pluripotent stage, has opened up tremendous opportunities for regenerative medicine. However, there are a number of obstacles to overcome before these cells can be widely considered for clinical applications. Here, we focus on induced transdifferentiation strategies to convert mature somatic cells to other mature cell types or progenitors, and we summarize the challenges that need to be met if the potential applications of transdifferentiation technology are to be achieved.


Subject(s)
Cell Transdifferentiation , Epigenesis, Genetic , Induced Pluripotent Stem Cells/cytology , Animals , Cell Culture Techniques , Cell Differentiation , Cell Lineage , Embryonic Stem Cells/cytology , Embryonic Stem Cells/immunology , Humans , Induced Pluripotent Stem Cells/immunology , Mice , Regenerative Medicine , Stem Cell Niche , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...