Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800824

ABSTRACT

A new copper complex, trans-diaqua-trans-bis [1-hydroxy-1,2-di (methoxycarbonyl) ethenato] copper (abbreviation Cu(II) complex), was synthesized and its plant growth regulation properties were investigated. The results show a sharp dependence of growth regulation activity of the Cu(II) complex on the type of culture and its concentration. New plant growth regulator accelerated the development of the corn root system (the increase in both length and weight) but showed a smaller effect on the development of the wheat and barley root systems. Stimulation of corn growth decreased with increasing Cu(II) complex concentration from 0.0001% to 0.01% (inhibition at high concentrations-0.01%). The development of corn stems was also accelerated but to a lesser extent. Chitosan-coated calcium alginate microcapsules suitable for delivery of Cu(II) complex to plants were prepared and characterized. Analysis of the FTIR spectrum showed that complex molecular interactions between functional groups of microcapsule constituents include mainly electrostatic interactions and hydrogen bonds. Microcapsules surface exhibits a soft granular surface structure with substructures consisting of abundant smaller particles with reduced surface roughness. Release profile analysis showed Fickian diffusion is the rate-controlling mechanism of Cu(II) complex releasing. The obtained results give new insights into the complexity of the interaction between the Cu(II) complex and microcapsule formulation constituents, which can be of great help in accelerating product development for the application in agriculture.


Subject(s)
Alginates/administration & dosage , Chitosan/administration & dosage , Drug Carriers/administration & dosage , Drug Compounding/methods , Plant Growth Regulators/chemical synthesis , Calorimetry, Differential Scanning , Capsules , Diffusion , Drug Carriers/chemistry , Germination/drug effects , Hydrogen Bonding , Microscopy, Electron, Scanning , Plant Roots/drug effects , Plant Roots/growth & development , Plant Stems/drug effects , Plant Stems/growth & development , Poaceae/drug effects , Poaceae/growth & development , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Static Electricity , Surface Properties
2.
Int J Mol Sci ; 22(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673329

ABSTRACT

Novel plant growth regulators (PGRs) based on the derivatives of dehydroamino acids 2,3-dehydroaspartic acid dimethyl ester (PGR1), Z-isomer of the potassium salt of 2-amino-3-methoxycarbonylacrylic acid (PGR2) and 1-methyl-3-methylamino-maleimide (PGR3) have been synthesized and their growth-regulating properties investigated. Laboratory testing revealed their plant growth-regulating activity. PGR1 showing the most stimulating activity on all laboratory tested cultures were used in field experiments. Results showed that PGR1 is a highly effective environmentally friendly plant growth regulator with effects on different crops. Biopolymeric microcapsule formulations (chitosan/alginate microcapsule loaded with PGR) suitable for application in agriculture were prepared and characterized. Physicochemical properties and release profiles of PGRs from microcapsule formulations depend on the molecular interactions between microcapsule constituents including mainly electrostatic interactions and hydrogen bonds. The differences in the microcapsule formulations structure did not affect the mechanism of PGRs release which was identified as diffusion through microcapsules. The obtained results opened a perspective for the future use of microcapsule formulations as new promising agroformulations with a sustained and target release for plant growth regulation.


Subject(s)
Crops, Agricultural/growth & development , Plant Growth Regulators , Plant Roots/growth & development , Capsules , Plant Growth Regulators/chemical synthesis , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...