Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Microbiol ; 2019: 5086240, 2019.
Article in English | MEDLINE | ID: mdl-31316564

ABSTRACT

Salmonella enterica Serotype 4,[5],12:i:-, a monophasic variant of S. Typhimurium, with high virulence and multidrug resistance is distributed globally causing pathogenicity to both humans and domesticated animals. BOX-A1R-based repetitive extragenic palindromic-PCR (BOX)-PCR proved to be superior to three other repetitive element-based PCR typing methods, namely, enterobacterial repetitive intergenic consensus (ERIC)-, poly-trinucleotide (GTG)5-, and repetitive extragenic palindromic (REP)-PCR (carried out under a single optimized amplification condition), in differentiating genetic relatedness among S. 4,[5],12:i:- isolates from feces of hospitalized patients (n=12) and isolates from minced pork samples of S. 4,[5],12:i:- (n=6), S. Typhimurium (n=6), and Salmonella Serogroup B (n=4) collected from different regions of northern Thailand. Construction of phylogenetic trees from amplicon size patterns allowed allocation of Salmonella isolates into clusters of similar genetic relatedness, with BOX-PCR generating more unique clusters for each serotype than the other three typing methods. BOX-, (GTG)5-, and REP-PCR indicated significant genetic relatedness between S. 4,[5],12:i:- isolates 1 and 9 from hospitalized patients and S. 4,[5],12:i:- isolate en 29 from minced pork, suggesting a possible route of transmission. Thus, BOX-PCR provides a suitable molecular typing method for discriminating genetic relatedness among Salmonella spp. of the same and different serotypes and should be suitable for application in typing and tracking route of transmission in Salmonella outbreaks.

2.
Plant Physiol ; 143(4): 1547-60, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17416639

ABSTRACT

The goal of this research is elucidation of the molecular mechanism for the unique photosystem II (PSII) damage and repair cycle in chloroplasts. A frequently occurring, irreversible photooxidative damage inhibits the PSII charge separation reaction and stops photosynthesis. The chloroplast PSII repair process rectifies this adverse effect by selectively removing and replacing the photoinactivated D1/32-kD reaction center protein (the chloroplast-encoded psbA gene product) from the massive (>1,000 kD) water-oxidizing and O2-evolving PSII holocomplex. DNA insertional mutagenesis in the model organism Chlamydomonas reinhardtii was applied for the isolation and characterization of rep27, a repair-aberrant mutant. Gene cloning and biochemical analyses in this mutant resulted in the identification of REP27, a nuclear gene encoding a putative chloroplast-targeted protein, which is specifically required for the completion of the D1 turnover process but is not essential for the de novo biogenesis and assembly of the PSII holocomplex in this model green alga. The REP27 protein contains two highly conserved tetratricopeptide repeats, postulated to facilitate the psbA mRNA cotranslational insertion of the nascent D1 protein in the existing PSII core template. Elucidation of the PSII repair mechanism may reveal the occurrence of hitherto unknown regulatory and catalytic reactions for the selective in situ replacement of specific proteins from within multiprotein complexes.


Subject(s)
Cell Nucleus/metabolism , Chloroplasts/metabolism , Genes, Plant , Light , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Base Sequence , DNA Primers , DNA, Plant , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Plasmids , Protein Biosynthesis , Sequence Homology, Amino Acid , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...