Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(4)2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33572094

ABSTRACT

The elaboration of new small molecules that target phosphodiesterase enzymes (PDEs), especially those of type 5 (PDE5), is an interesting and emerging topic nowadays. A new series of heterocycle-based aminothiazoles were designed and synthesized from the key intermediate, 3-oxo-N-(thiazol-2-yl)butanamide (a PDE5 inhibitor that retains its amidic function), as an essential pharmacophoric moiety. The PDE5 inhibitors prevent the degradation of cyclic guanosine monophosphate, thereby causing severe hypotension as a marked side effect. Hence, an in vivo testing of the target compounds was conducted to verify its relation with arterial blood pressure. Utilizing sildenafil as the reference drug, Compounds 5, 10a, and 11b achieved 100% inhibitions of PDE5 without significantly lowering the mean arterial blood pressures (115.95 ± 2.91, 110.3 ± 2.84, and 78.3 ± 2.57, respectively). The molecular docking study revealed that the tested compounds exhibited docking poses that were similar to that of sildenafil (exploiting the amide functionality that interacted with GLN:817:A). The molecular shape and electrostatic similarity revealed a comparable physically achievable electrostatic potential with the reference drug, sildenafil. Therefore, these concomitant results revealed that the tested compounds exerted sildenafil-like inhibitory effects (although without its known drawbacks) on blood circulation, thus suggesting that the tested compounds might represent a cornerstone of beneficial drug candidates for the safe treatment for erectile dysfunction.


Subject(s)
Cyclic GMP/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/chemistry , Drug Design , Phosphodiesterase 5 Inhibitors/chemistry , Phosphodiesterase 5 Inhibitors/pharmacology , Pyridines/chemistry , Thiazoles/chemistry , Humans , Structure-Activity Relationship
2.
RSC Adv ; 10(50): 29723-29736, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-35518254

ABSTRACT

A new series of 2-aminothiazole derivatives was designed and prepared as phosphodiesterase type 5 (PDE5) regulators and COX-1/COX-2 inhibitors. The screening of the synthesized compounds for PDE5 activity was carried out using sildenafil as a reference drug. Strikingly, compounds 23a and 23c were found to have a complete inhibitory effect on PDE5 (100%) at 10 µM without causing hypotension and the limited side effect of PDE5 inhibitors, suggest a distinctive therapeutic role of these derivatives in erectile dysfunction. On the other hand, compounds 5a, 17, 21 and 23b increased the PDE5 activity (PDE5 enhancers) at 10 µM. In addition, the study includes the screening of the COX-1/COX-2 inhibition induced by the synthesized compounds. All tested compounds have an inhibitory effect against COX-1 activity (IC50 = 1.00-6.34 µM range) and COX-2 activity (IC50 = 0.09-0.71 µM range). Moreover, a molecular docking study was implemented to reveal the binding interactions of potent compounds in the binding sites of PDE5 (PDB ID 2H42), COX-1 and COX-2 (PDB ID 3LN1) enzymes. For the interaction with the PDE5 enzyme, activator compounds had a strong binding mode (HB with Gln817:A) than inhibitory derivatives. Both types of compounds are considered as PDE5 regulators. This novel finding will encourage us to discover a new pharmacological application of small chemical entities as the PDE5 enhancer, or will lower side effects as PDE5 inhibitors. All active compounds adopted the Y-shape along the COX-2 active site.

SELECTION OF CITATIONS
SEARCH DETAIL
...