Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Environ Sci Pollut Res Int ; 31(23): 33482-33494, 2024 May.
Article in English | MEDLINE | ID: mdl-38683425

ABSTRACT

In the present study, green synthesis of silver nanoparticles (VNE-AgNPs) via Verbascum nudatum extract was carried out for the first time. The synthesized AgNPs were characterized by different spectral methods such as UV-vis, FTIR, XRD, TEM, and EDAX. According to TEM analyses, the average size range of AgNPs was 17-21 nm, and the dominant peaks in the 111°, 200°, 221°, and 311° planes in the XRD pattern indicated the Ag-NPs FCC crystal structure. FTIR data showed that VNE-AgNPs interacted with many reducing, capping, and stabilizing phytochemicals during green synthesis. VNE-AgNPs had higher antibacterial activity against S. aureus and E. coli bacterial strains with a maximum inhibition zone of 21 and 18 mm, respectively, than penicillin 5 IU, used as a positive control in the study. The cytotoxic effect of VNE-AgNPs appeared at a concentration of 50 µg/mL in L929 cells and 5 µg/mL in cancer (A549) cells. When the impact of VNE-AgNPs and C-AgNPs on inflammation was compared, it was found that VNE-AgNPs increased TNF-α levels (333.45 ± 67.20 ng/mg-protein) statistically (p < 0.05) more than TNF-α levels (256.92 ± 27.88 ng/mg-protein) in cells treated with C-AgNPs. VNE-Ag-NPs were found to have a degradation efficiency of 65% against methylene blue (MB) dye within 3 h.


Subject(s)
Metal Nanoparticles , Plant Extracts , Silver , Metal Nanoparticles/chemistry , Silver/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Green Chemistry Technology , Escherichia coli/drug effects , Staphylococcus aureus/drug effects , Humans , Coloring Agents/chemistry
3.
Int J Biol Macromol ; 257(Pt 1): 128447, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040162

ABSTRACT

The aim of this study was to produce new nanocomposites with antimicrobial, antioxidant and anticancer properties that can be used in biomedical research based on carboxymethyl cellulose (NaCMC) biopolymer. First, poly(2-oxo-2-(pentafluorophenoxy)ethyl-2-methylprop-2-enoate) (PPFMA) was synthesized and characterized by FTIR and NMR techniques. It was then blended with NaCMC by in situ/hydrothermal method to produce a semi-synthetic functional material. Changes in the FTIR data of the blend and the single Tg value from DSC confirmed the compatibility of the blend. To enhance the thermal and biological properties of the NaCMC-PPFMA blend, biosynthesized Ag-ZnONPs were hydrothermally incorporated into the blend at different weight ratios. The prepared materials were characterized by SEM, EDX, TEM, XRD and FTIR. The thermal stability of the materials was determined by thermogravimetric analysis (TGA), and glass transition temperatures (Tg) was determined by differential scanning calorimeter (DSC). The oxidant, antioxidant, antimicrobial, and cytotoxic properties of PPFMA, Ag-ZnONPs, PPFMA-NaCMC blend, and nanocomposites were investigated in detail. The total oxidant state (TOS) value of the NaCMC-PPFMA blend, which was 0.72 µmol equivalent H2O2/L, increased to 7.2-10.4 µmol equivalent H2O2/L with the addition of Ag-ZnONPs. Ag-ZnONPs decreased total antioxidant state (TAS) levels of the nanocomposites while increasing their oxidant activity. Therefore, an increase in the antimicrobial activity of the nanocomposites was observed. Adding Ag-ZnONPs to the NaCMC-PPFMA blend increased the thermal stability by 22 °C and the Tg value by 9 °C. Finally, the potential of Ag-ZnONPs containing nanocomposites in wound healing therapies was examined. The findings suggest that nanocomposites prepared by incorporating Ag-ZnONPs into the semi-synthetic NaCMC-PPFMA blend can be a source of bio-safe raw materials and can be used as potential wound healers.


Subject(s)
Anti-Infective Agents , Nanocomposites , Zinc Oxide , Carboxymethylcellulose Sodium/chemistry , Zinc Oxide/chemistry , Antioxidants/pharmacology , Hydrogen Peroxide , Nanocomposites/chemistry , Anti-Infective Agents/pharmacology , Oxidants , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
4.
Front Chem ; 10: 856947, 2022.
Article in English | MEDLINE | ID: mdl-35646812

ABSTRACT

Nanotube/nanowire-structured TiO2 was formed on the Ti surface by an anodic oxidation method performed at different potential values (50 or 60 V) and for different times (3 or 5 h). The TiO2 photocatalysts were taken in powder form using the ultrasonic treatment from the Ti electrodes, calcined at different temperatures, and characterized by XRD and SEM techniques, and BET surface area analyses. Both the crystallinity and the size of the primary TiO2 particles increased by increasing the heat treatment temperature. While all the photocatalysts heat treated up to 500°C were only in the anatase phase, the particles heat-treated at 700°C consisted of both anatase and rutile phases. The BET specific surface area of the samples decreased drastically after heat treatment of 700°C because of partial sinterization. SEM analyses indicated that the prepared materials were structured in both nanotubes and nanowires. They were tested as photocatalysts for the selective oxidation of glycerol and 3-pyridinemethanol under UVA irradiation in water at room temperature and ambient pressure. Glyceraldehyde, 1,3-dihydroxyacetone, and formic acid were determined as products in glycerol oxidation, while the products of 3-pyridinemethanol oxidation were 3-pyridinemethanal and vitamin B3. Non-nanotube/nanowire-structured commercial (Degussa P25 and Merck TiO2) photocatalysts were used for the sake of comparison. Low selectivity values towards the products obtained by partial oxidation were determined for glycerol. On the contrary, higher selectivity values towards the products were obtained (total 3-pyridinemethanal and vitamin B3 selectivity up to ca. 90%) for the photocatalytic oxidation of 3-pyridinemethanol. TiO2 photocatalysts must be highly crystalline (calcined at 700°C) for effective oxidation of glycerol, while for the selective oxidation of 3-pyridinemethanol it was not necessary to obtain a high crystallinity, and the optimal heat treatment temperature was 250°C. Glycerol and its oxidation products could more easily desorb from highly crystalline and less hydroxylated surfaces, which would justifies their higher activity. The prepared photocatalysts showed lower activity than Degussa P25, but a greater selectivity towards the products found.

SELECTION OF CITATIONS
SEARCH DETAIL
...