Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 3468, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35236882

ABSTRACT

Single phase CeO2 nanocrystals were bio-synthesized using Hoodia gordonii natural extract as an effective chelating agent. The nanocrystals with an average diameter of 〈Ø〉 ~ 5-26 nm with 4+ electronic valence of Ce displayed a remarkable UV selectivity and an exceptional photostability. The diffuse reflectivity profile of such CeO2 exhibited a unique UV selectivity, in a form of a Heaviside function-like type profile in the solar spectrum. While the UV reflectivity is significantly low; within the range of 0.7%, it reaches 63% in the VIS and NIR. Their relative Reactive Oxygen Species (ROS) production was found to be < 1 within a wide range of concentration (0.5-1000 µg/ml). This exceptional photostability conjugated to a sound UV selectivity opens a potential horizon to a novel family of green nano-cosmetics by green nano-processing.


Subject(s)
Cerium , Nanoparticles , Antioxidants/chemistry , Cerium/chemistry , Nanoparticles/chemistry , Reactive Oxygen Species
2.
Sci Rep ; 10(1): 10982, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32620923

ABSTRACT

We report on the synthesis and enhanced thermal conductivity of stable Ag-decorated 2-D graphene nanocomposite in ethylene glycol based nanofluid by laser liquid solid interaction. A surfactant free nanofluid of Ag nanoparticles anchored onto the 2-D graphene sheets were synthesized using a two-step laser liquid solid interaction approach. In order to understand a pulsed Nd:YAG laser at the fundamental frequency (λ = 1,064 nm) to ablate Ag and graphite composite target submerged in ethylene glycol (EG) to form AgNPs decorated 2-D GNs-EG based nanofluid. From a heat transfer point of view, it was observed that the thermal conductivity of this stable Ag-graphene/EG is significantly enhanced by a factor of about 32.3%; this is highest reported value for a graphene based nanofluid.

3.
J Colloid Interface Sci ; 493: 130-137, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28088565

ABSTRACT

Silver nanoparticles (AgNPs) grown on a three dimensional (3d) graphene networks (GNs) has been successfully prepared by an efficient and rapid microwave-assisted growth process to form GNs/AgNPs nanocomposite electrode materials for supercapacitor application. The 3d nature of the used GNs offers a unique architecture, which creates an efficient conduction networks and maximum utilization of space and interface, and acts as a conductive layer for the deposited AgNPs. The electrochemical performances of the fabricated electrode were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) tests. Specifically, the optimal GNs/AgNPs nanocomposite exhibits remarkable performances with a high specific capacitance of 528Fg-1 at a current density of 1Ag-1 and excellent capacitance retention of ∼93% after 3000cycles. Moreover, this microwave-assisted growth strategy of AgNPs is simple and effective, which could be extended to the construction of other three dimensional graphene based metallic composites for energy storage and conversion applications.

4.
J Colloid Interface Sci ; 461: 154-161, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26397922

ABSTRACT

Simonkolleite (Zn5(OH)8Cl2·H2O) nanoplatelets has been deposited on nickel foam-supported graphene by using an efficient microwave-assisted hydrothermal method. The three-dimensional (3D) porous microstructure of the as-fabricated nickel foam-graphene/simonkolleite (NiF-G/SimonK) composite is beneficial to electrolyte penetration and ions exchange, whereas graphene provide improved electronic conductivity. Structural and morphological characterizations confirmed the presence of highly crystalline hexagonal-shaped nanoplatelets of simonkolleite. Field emission scanning electron microscope (FE-SEM) of the NiF-G/SimonK composite revealed that the SimonK nanoplatelets were evenly distributed on the surface of NiF-G and interlaced with each other, resulting in a higher specific surface area of 35.69 m(2) g(-1) compared to SimonK deposited directly on NiF 17.2 m(2) g(-1). Electrochemical measurements demonstrated that the NiF-G/SimonK composite exhibit a high specific capacitance of 836 F g(-1) at a current density of 1 A g(-1), and excellent rate capability and cycling stability with capacitance retention of 92% after 5000 charge/discharge cycles.

SELECTION OF CITATIONS
SEARCH DETAIL
...