Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 263: 119589, 2022 11.
Article in English | MEDLINE | ID: mdl-36030062

ABSTRACT

Most neuroimaging studies of brain function analyze data in normalized space to identify regions of common activation across participants. These studies treat interindividual differences in brain organization as noise, but this approach can obscure important information about the brain's functional architecture. Recently, a number of studies have adopted a person-specific approach that aims to characterize these individual differences and explore their reliability and implications for behavior. A subset of these studies has taken a precision imaging approach that collects multiple hours of data from each participant to map brain function on a finer scale. In this review, we provide a broad overview of how person-specific and precision imaging techniques have used resting-state measures to examine individual differences in the brain's organization and their impact on behavior, followed by how task-based activity continues to add detail to these discoveries. We argue that person-specific and precision approaches demonstrate substantial promise in uncovering new details of the brain's functional organization and its relationship to behavior in many areas of cognitive neuroscience. We also discuss some current limitations in this new field and some new directions it may take.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Connectome/methods , Reproducibility of Results , Brain/physiology , Neuroimaging
2.
Neuroscience ; 421: 31-38, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31676351

ABSTRACT

Paired-pulse transcranial magnetic stimulation (ppTMS) has been used extensively to probe local facilitatory and inhibitory function in motor cortex. We previously developed a reliable ppTMS method to investigate these functions in visual cortex and found reduced thresholds for net intracortical inhibition compared to motor cortex. The current study used this method to investigate the temporal dynamics of local facilitatory and inhibitory networks in visual cortex in 28 healthy subjects. We measured the size of the visual disturbance (phosphene) evoked by stimulating visual cortex with a fixed intensity, supra-threshold test stimulus (TS) when that TS was preceded by a sub-threshold conditioning stimulus (CS). We manipulated the inter-stimulus interval (ISI) and assessed how the size of the phosphene elicited by the fixed-intensity TS changed as a function of interval for two different CS intensities (45% and 75% of phosphene threshold). At 45% of threshold, the CS produced uniform suppression of the phosphene elicited by the TS across ISIs ranging from 2 to 200 ms. At 75% of threshold, the CS did not have a significant effect on phosphene size across the 2-15 ms intervals. Intervals of 50-200 ms exhibited statistically significant suppression of phosphenes, however, suppression was not uniform with some subjects demonstrating no change or facilitation. This study demonstrates that the temporal dynamics of local inhibitory and facilitatory networks are different across motor and visual cortex and that optimal parameters to index local inhibitory and facilitatory influences in motor cortex are not necessarily optimal for visual cortex. We refer to the observed inhibition as visual cortex inhibition (VCI) to distinguish it from the phenomenon reported in motor cortex.


Subject(s)
Neural Inhibition/physiology , Phosphenes/physiology , Visual Cortex/physiology , Adult , Evoked Potentials, Motor , Female , Humans , Inhibition, Psychological , Male , Motor Cortex/physiology , Transcranial Magnetic Stimulation , Young Adult
3.
Brain Stimul ; 12(3): 702-704, 2019.
Article in English | MEDLINE | ID: mdl-30700394

ABSTRACT

BACKGROUND: Transcranial magnetic stimulation (TMS) is a non-invasive method to stimulate localized brain regions. Despite widespread use in motor cortex, TMS is seldom performed in sensory areas due to variable, qualitative metrics. OBJECTIVE: Assess the reliability and validity of tracing phosphenes, and to investigate the stimulation parameters necessary to elicit decreased visual cortex excitability with paired-pulse TMS at short inter-stimulus intervals. METHODS: Across two sessions, single and paired-pulse recruitment curves were derived by having participants outline elicited phosphenes and calculating resulting average phosphene sizes. RESULTS: Phosphene size scaled with stimulus intensity, similar to motor cortex. Paired-pulse recruitment curves demonstrated inhibition at lower conditioning stimulus intensities than observed in motor cortex. Reliability was high across sessions. CONCLUSIONS: TMS-induced phosphenes are a valid and reliable tool for measuring cortical excitability and inhibition in early visual areas. Our results also provide appropriate stimulation parameters for measuring short-latency intracortical inhibition in visual cortex.


Subject(s)
Neural Inhibition , Phosphenes , Transcranial Magnetic Stimulation/methods , Visual Cortex/physiology , Adult , Cortical Excitability , Female , Humans , Male , Memory , Motor Cortex/physiology , Reaction Time , Reproducibility of Results , Transcranial Magnetic Stimulation/standards
SELECTION OF CITATIONS
SEARCH DETAIL
...