Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(10): 6798-6812, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38662434

ABSTRACT

We have demonstrated N-substituted 2-pyridones as an N,O-directing group for selective C(sp2)-H-activated thiolation, selenylation, and sulfonamidation of ortho C-H bonds of benzamides. This method utilizes a cost-effective Cu(II)-salt catalyst instead of precious metal catalysts, achieving high yields, including gram-scale synthesis and excellent functional group tolerance. We applied this protocol to access 30 different compounds with high yields, demonstrating thiolation of fluorine-substituted benzamides as well. Density functional theory (DFT) calculations support the mechanism, including acetate-supported concerted metalation deprotonation (CMD) steps and the unique role of dimethyl sulfoxide (DMSO) solvent. The facile synthesis of pharmaceutically important sulfonamides and other compounds highlights the method's potential in chemistry and medicinal chemistry.

2.
J Org Chem ; 85(13): 8563-8579, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32574496

ABSTRACT

We have identified different N-substituted 2-pyridones as inbuilt directing groups for selective C-H-activated functionalization instead of deprotecting and/or throwing away the directing groups. A robust general method for external ligand-free PdII-catalyzed C(sp2)-H olefination and alkynylation is established to access valuable phenylacetamido-2-pyridones. Diverse substrate scope has been demonstrated with 48 different examples with high yield and gram-scale synthesis. Adequate tolerance of valuable functional groups was also observed, such as olefins possessing esters, sulfone, amide, cyanide, and ketones, aromatic residues containing fluorine, chlorine, bromine, NO2, methyl, dimethyl, and methoxy, as well as 2-pyridone-N-bearing methyl, cyclopropyl methyl, cyclopentyl methyl, benzyl, phenyl, acetate, and acetamide groups, which smoothly produced the respective desired products. We used triisopropyl silane-substituted alkynes for the alkynylation reaction, which can easily be converted to several functional groups including terminal alkyne, heterocycle through click reaction, and others. Implementing our protocol, we have also demonstrated late-stage olefination and alkynylation of 2-pyridone, containing the CB2 agonist-type molecule with excellent yield. Considering N-substituted 2-pyridone acts as a biologically-active structural unit, this general method has the significance in terms of late-stage functionalization to access new molecular entities which can be employed in medicinal chemistry research through diverse C-H activation.

3.
Org Lett ; 20(13): 4062-4066, 2018 07 06.
Article in English | MEDLINE | ID: mdl-29894193

ABSTRACT

A new bidentate directing group, 3-amino-1-methyl-1 H-pyridin-2-one, is introduced to achieve a powerful PdII metallacycle for selective γ-C(sp3)-H activation and arylation of aromatic and aliphatic carboxylic acid derivatives. The versatility of the directing group is validated for remote arylation of ß-C(sp3)-H, ß-C(sp2)-H, and γ-C(sp2)-H to achieve therapeutically important 2-pyridone analogues and arylated acid synthons. The traceless removal of the directing group to retrieve the directing element and carboxylic acids makes this method more interesting.

5.
Bioorg Med Chem ; 24(11): 2486-503, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27112449

ABSTRACT

Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats.


Subject(s)
Anti-Obesity Agents/pharmacology , Benzimidazoles/pharmacology , Cytochrome P-450 CYP3A/metabolism , Drug Design , Obesity/drug therapy , Pyridones/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/chemistry , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Dose-Response Relationship, Drug , Humans , Male , Molecular Structure , Pyridones/chemical synthesis , Pyridones/chemistry , Rats , Rats, Inbred F344 , Structure-Activity Relationship , Time Factors
6.
J Med Chem ; 59(3): 1116-39, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26736071

ABSTRACT

Aiming to discover melanin-concentrating hormone receptor 1 (MCHR1) antagonists with improved safety profiles, we hypothesized that the aliphatic amine employed in most antagonists reported to date could be removed if the bicyclic motif of the compound scaffold interacted with Asp123 and/or Tyr272 of MCHR1. We excluded aliphatic amines from our compound designs, with a cutoff value of pK(a) < 8, and explored aliphatic amine-free MCHR1 antagonists in a CNS-oriented chemical space limited by four descriptors (TPSA, ClogP, MW, and HBD count). Screening of novel bicyclic motifs with high intrinsic binding affinity for MCHR1 identified the imidazo[1,2-a]pyridine ring (represented in compounds 6a and 6b), and subsequent cyclization of the central aliphatic amide linkage led to the discovery of a potent, orally bioavailable MCHR1 antagonist 4-[(4-chlorobenzyl)oxy]-1-(2-cyclopropyl-3-methylimidazo[1,2-a]pyridin-6-yl)pyridin-2(1H)-one 10a. It exhibited low potential for hERG inhibition and phospholipidosis induction as well as sufficient brain concentration to exert antiobesity effects in diet-induced obese rats.


Subject(s)
Anti-Obesity Agents/pharmacology , Imidazoles/chemistry , Imidazoles/pharmacology , Obesity/drug therapy , Pyridones/chemistry , Pyridones/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Anti-Obesity Agents/chemical synthesis , Anti-Obesity Agents/chemistry , CHO Cells , Cricetulus , Dose-Response Relationship, Drug , Humans , Imidazoles/chemical synthesis , Male , Molecular Structure , Pyridones/chemical synthesis , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Receptors, Somatostatin/deficiency , Structure-Activity Relationship
7.
J Org Chem ; 79(12): 5608-16, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24861462

ABSTRACT

We report the first example of a highly diastereoselective Garratt-Braverman cyclization leading to the synthesis of chiral aryl naphthalene-amino acid hybrids in excellent yields. The stereogenecity in the amino acid has induced high diastereoselectivity for the reaction. Computations based on density functional theory indicated a lower activation free energy barrier for the M isomer as compared to that for the P diastereomer (ΔΔG = 3.48 kcal/mol). Comparison of the recorded CD spectrum of the product with the calculated one also supported the preferential formation of the M diastereomer.

8.
J Lipid Res ; 44(1): 172-81, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12518036

ABSTRACT

Caenorhabditis elegans requires sterol, usually supplied as cholesterol, but this is enzymatically modified, and different sterols can substitute. Sterol deprivation decreased brood size and adult growth in the first generation, and completely, reversibly, arrested growth as larvae in the second. After one generation of sterol deprivation, 10 ng/ml cholesterol allowed delayed laying of a few eggs, but full growth required 300 ng/ml. C. elegans synthesizes two unusual 4alpha-methyl sterols (4MSs), but each 4MS supported only limited growth as the sole sterol. However, addition of only 10 ng of cholesterol to 1,000 ng of 4MS restored full growth and egg-laying, suggesting that both a 4MS and an unmethylated sterol are required for development. Filipin stained sterols in only a few specific cells: the excretory gland cell, two amphid socket cells, two phasmid socket cells and, in males, spicule socket cells. Sterols were also present in the pharynx and in the intestine of feeding animals in a proximal-to-distal gradient. This non-random sterol distribution, the low concentration requirements, and the effects of 4MSs argues that sterols are unlikely to be used for bulk structural modification of cell membranes, but may be required as hormone precursors and/or developmental effectors.


Subject(s)
Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Cholestenes/metabolism , Cholestenes/pharmacology , Sterols/metabolism , Sterols/pharmacology , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Cell Membrane/metabolism , Cholesterol/administration & dosage , Cholesterol/deficiency , Cholesterol/metabolism , Fluorescence , Helminth Proteins/metabolism , Molecular Structure , Nutritional Physiological Phenomena , Protein Binding/drug effects , Reproduction/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...