Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Leukoc Biol ; 115(3): 536-546, 2024 02 23.
Article in English | MEDLINE | ID: mdl-37992073

ABSTRACT

Candida albicans belongs to our commensal mucosal flora and in immune-competent individuals in the absence of epithelial damage, this fungus is well tolerated and controlled by our immune defense. However, C. albicans is an opportunistic microorganism that can cause different forms of infections, ranging from superficial to life-threatening systemic infections. C. albicans is polymorphic and switches between different phenotypes (e.g. from yeast form to hyphal form). C. albicans hyphae are invasive and can grow into tissues to eventually reach circulation. During fungal infections, neutrophils in particular play a critical role for the defense, but how neutrophils are directed toward the invasive forms of fungi is less well understood. We set out to investigate possible neutrophil chemoattractants released by C. albicans into culture supernatants. We found that cell-free culture supernatants from the hyphal form of C. albicans induced both neutrophil chemotaxis and concomitant intracellular calcium transients. Size separation and hydrophobic sorting of supernatants indicated small hydrophilic factors as responsible for the activity. Further analysis showed that the culture supernatants contained high levels of short-chain fatty acids with higher levels from hyphae as compared to yeast. Short-chain fatty acids are known neutrophil chemoattractants acting via the neutrophil free fatty acid receptor 2. In line with this, the calcium signaling in neutrophils induced by hyphae culture supernatants was blocked by a free fatty acid receptor 2 antagonist and potently increased in the presence of a positive allosteric modulator. Our data imply that short-chain fatty acids may act as a recruitment signal whereby neutrophils can detect C. albicans hyphae.


Subject(s)
Candida albicans , Neutrophils , Humans , Fatty Acids, Nonesterified/analysis , Hyphae/chemistry , Hyphae/genetics , Chemotaxis , Fatty Acids, Volatile/analysis , Chemotactic Factors
2.
PLoS One ; 16(12): e0261724, 2021.
Article in English | MEDLINE | ID: mdl-34932608

ABSTRACT

Papillon-Lefèvre Syndrome (PLS) is an autosomal recessive monogenic disease caused by loss-of-function mutations in the CTSC gene, thus preventing the synthesis of the protease Cathepsin C (CTSC) in a proteolytically active form. CTSC is responsible for the activation of the pro-forms of the neutrophil serine proteases (NSPs; Elastase, Proteinase 3 and Cathepsin G), suggesting its involvement in a variety of neutrophil functions. In PLS neutrophils, the lack of CTSC protease activity leads to inactivity of the NSPs. Clinically, PLS is characterized by an early, typically pre-pubertal, onset of severe periodontal pathology and palmoplantar hyperkeratosis. However, PLS is not considered an immune deficiency as patients do not typically suffer from recurrent and severe (bacterial and fungal) infections. In this study we investigated an unusual CTSC mutation in two siblings with PLS, a 503A>G substitution in exon 4 of the CTSC gene, expected to result in an amino acid replacement from tyrosine to cysteine at position 168 of the CTSC protein. Both patients bearing this mutation presented with pronounced periodontal pathology. The characteristics and functions of neutrophils from patients homozygous for the 503A>G CTSC mutation were compared to another previously described PLS mutation (755A>T), and a small cohort of healthy volunteers. Neutrophil lysates from patients with the 503A>G substitution lacked CTSC protein and did not display any CTSC or NSP activity, yet neutrophil counts, morphology, priming, chemotaxis, radical production, and regulation of apoptosis were without any overt signs of alteration. However, NET formation upon PMA-stimulation was found to be severely depressed, but not abolished, in PLS neutrophils.


Subject(s)
Cathepsin C/genetics , Extracellular Traps/metabolism , Neutrophils/pathology , Papillon-Lefevre Disease/genetics , Serine Proteases/metabolism , Adult , Apoptosis , Cathepsin C/metabolism , Flow Cytometry , Humans , Loss of Function Mutation/genetics , Middle Aged , Papillon-Lefevre Disease/enzymology , Papillon-Lefevre Disease/pathology , Reactive Oxygen Species/metabolism , Sequence Analysis, DNA
3.
Cell Microbiol ; 23(8): e13348, 2021 08.
Article in English | MEDLINE | ID: mdl-33913592

ABSTRACT

Fusobacterium nucleatum is a gram-negative and anaerobic oral commensal that is implicated in inflammatory conditions of the tooth-supporting structures, that is, periodontal diseases. One of the main characteristics of these conditions is an accumulation of neutrophil granulocytes in the gingival pockets where bacteria reside. Neutrophils are recruited to tissue-residing microbes by gradients of bacteria derived chemoattractants, and the cellular migration over the pocket epithelium into the gingival pocket is likely governed by chemoattractants released by the amino acid fermenting anaerobes typically colonising this site. However, the chemoattractants released by F. nucleatum and other oral anaerobes have long been unidentified. In the present study, we show that the major chemoattractants released during the growth of F. nucleatum are short chain fatty acids (SCFAs), primarily acetate and butyrate. These SCFAs, that are released at high levels as end-products of the metabolism of F. nucleatum, trigger chemotaxis of human neutrophils, as well as cytosolic Ca2+ signals, via free fatty acid receptor 2 (FFAR2). This finding establishes the SCFA-FFAR2 interaction as an important mechanism in the recruitment of neutrophils to the periodontal pocket, but could also be of importance in the pathogenesis of other medical conditions involving colonisation/infection of F. nucleatum.


Subject(s)
Fusobacterium nucleatum , Neutrophils , Chemotactic Factors , Fatty Acids, Nonesterified , Fatty Acids, Volatile , Humans
4.
J Leukoc Biol ; 109(2): 349-362, 2021 02.
Article in English | MEDLINE | ID: mdl-32531826

ABSTRACT

In recent years, the concept of distinct subpopulations of human neutrophils has attracted much attention. One bona fide subset marker, exclusively expressed by a proportion of circulating neutrophils in a given individual, and therefore dividing neutrophils in two distinct subpopulations, is the glycoprotein CD177. CD177 is expressed on the plasma and granule membranes of 0-100% of circulating neutrophils depending on the donor. Several in vitro studies have linked CD177 to neutrophil transmigration, yet very few have looked at the role of CD177 for tissue recruitment in vivo. We investigate whether the CD177+ and CD177- neutrophil subsets differ in their propensity to migrate to both aseptic- and microbe-triggered inflamed human tissues. Microbe-triggered neutrophil migration was evaluated in samples of gingival crevicular fluid (GCF) from patients with periodontitis, whereas neutrophil migration to aseptic inflammation was evaluated in synovial fluid from patients with inflammatory arthritis, as well as in exudate from experimental skin chambers applied on healthy donors. We found that the proportion of CD177+ neutrophils was significantly higher in GCF from patients with periodontitis, as compared to blood from the same individuals. Such accumulation of CD177+ neutrophils was not seen in the two models of aseptic inflammation. Moreover, the proportion of CD177+ neutrophils in circulation was significantly higher in the periodontitis patient group, as compared to healthy donors. Our data indicate that the CD177+ neutrophil subset is preferentially recruited to the gingival crevice of periodontitis patients, and may imply that this subtype is of particular importance for situations of microbe-driven inflammation.


Subject(s)
Gingival Crevicular Fluid/cytology , Isoantigens/metabolism , Neutrophils/metabolism , Periodontitis/immunology , Periodontitis/pathology , Receptors, Cell Surface/metabolism , Arthritis/immunology , Arthritis/pathology , Cell Death/drug effects , Cell Movement/drug effects , Chemotactic Factors/pharmacology , GPI-Linked Proteins/blood , GPI-Linked Proteins/metabolism , Gingival Crevicular Fluid/drug effects , Humans , Inflammation/immunology , Inflammation/pathology , Isoantigens/blood , Models, Biological , Neutrophils/drug effects , Periodontitis/blood , Periodontitis/microbiology , Receptors, Cell Surface/blood , Synovial Fluid/drug effects , Synovial Fluid/metabolism , Tissue Donors
5.
Front Cell Infect Microbiol ; 10: 620681, 2020.
Article in English | MEDLINE | ID: mdl-33542906

ABSTRACT

Neutrophil migration from blood to tissue-residing microbes is governed by a series of chemoattractant gradients of both endogenous and microbial origin. Periodontal disease is characterized by neutrophil accumulation in the gingival pocket, recruited by the subgingival biofilm consisting mainly of gram-negative, anaerobic and proteolytic species such as Porphyromonas gingivalis. The fact that neutrophils are the dominating cell type in the gingival pocket suggests that neutrophil-specific chemoattractants are released by subgingival bacteria, but characterization of chemoattractants released by subgingival biofilm species remains incomplete. In the present study we characterized small (< 3 kDa) soluble chemoattractants released by growing P. gingivalis, and show that these are selective for neutrophils. Most neutrophil chemoattractant receptors are expressed also by mononuclear phagocytes, the free fatty acid receptor 2 (FFAR2) being an exception. In agreement with the selective neutrophil recruitment, the chemotactic activity found in P. gingivalis supernatants was mediated in part by a mixture of short chain fatty acids (SCFAs) that are recognized by FFAR2, and other leukocytes (including monocytes) did not respond to SCFA stimulation. Although SCFAs, produced by bacterial fermentation of dietary fiber in the gut, has previously been shown to utilize FFAR2, our data demonstrate that the pronounced proteolytic metabolism employed by P. gingivalis (and likely also other subgingival biofilm bacteria associated with periodontal diseases) may result in the generation of SCFAs that attract neutrophils to the gingival pocket. This finding highlights the interaction between SCFAs and FFAR2 in the context of P. gingivalis colonization during periodontal disease, but may also have implications for other inflammatory pathologies involving proteolytic bacteria.


Subject(s)
Neutrophils , Porphyromonas gingivalis , Chemotactic Factors , Fatty Acids, Volatile , Interleukin-8
6.
Immunohorizons ; 3(10): 488-497, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628159

ABSTRACT

Neutrophils are capable of producing significant amounts of reactive oxygen species (ROS) by the phagocyte NADPH oxidase, which consists of membrane-bound and cytoplasmic subunits that assemble during activation. Neutrophils harbor two distinct pools of the membrane-localized oxidase components, one expressed in the plasma membrane and one in the membranes of intracellular granules. Assembly of active oxidase at either type of membrane leads to release of extracellular ROS or to the production of ROS inside intracellular compartments, respectively. The cytoplasmic NADPH oxidase subunit p40phox seems selectively critical for the ability to generate intracellular ROS, and the recent characterization of patients with p40phox deficiency implies that selective loss of intracellular neutrophil ROS leads to disease with pronounced hyperinflammatory features, suggesting that these ROS are critical for regulation of inflammation. This study aimed at characterizing two pharmacological NADPH oxidase inhibitors, the newly described GSK2795039 and the widely used diphenyleneiodonium (DPI), focusing on their abilities to inhibit human neutrophil ROS production extra- and intracellularly. Whereas GSK2795039 blocked extra- and intracellular NADPH oxidase activity equally, DPI was found to selectively interfere with intracellular ROS production. Selectivity for the intracellular NADPH oxidase was evident as a lower IC50 value, faster onset, and irreversibility of inhibition. We found no evidence of direct interactions between DPI and p40phox, but the selectivity of DPI confirms that regulation of NADPH oxidase activity in neutrophils differs depending on the subcellular localization of the enzyme. This information may be used to pharmacologically mimic p40phox deficiency and to further our understanding of how intracellular ROS contribute to health and disease.


Subject(s)
Aminopyridines/pharmacology , NADPH Oxidases/antagonists & inhibitors , Neutrophils/drug effects , Onium Compounds/pharmacology , Sulfonamides/pharmacology , Cells, Cultured , Humans , Neutrophils/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...