Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurodev Disord ; 16(1): 18, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637764

ABSTRACT

BACKGROUND: Overactivity is prevalent in several rare genetic neurodevelopmental syndromes, including Smith-Magenis syndrome, Angelman syndrome, and tuberous sclerosis complex, although has been predominantly assessed using questionnaire techniques. Threats to the precision and validity of questionnaire data may undermine existing insights into this behaviour. Previous research indicates objective measures, namely actigraphy, can effectively differentiate non-overactive children from those with attention-deficit hyperactivity disorder. This study is the first to examine the sensitivity of actigraphy to overactivity across rare genetic syndromes associated with intellectual disability, through comparisons with typically-developing peers and questionnaire overactivity estimates. METHODS: A secondary analysis of actigraphy data and overactivity estimates from The Activity Questionnaire (TAQ) was conducted for children aged 4-15 years with Smith-Magenis syndrome (N=20), Angelman syndrome (N=26), tuberous sclerosis complex (N=16), and typically-developing children (N=61). Actigraphy data were summarized using the M10 non-parametric circadian rhythm variable, and 24-hour activity profiles were modelled via functional linear modelling. Associations between actigraphy data and TAQ overactivity estimates were explored. Differences in actigraphy-defined activity were also examined between syndrome and typically-developing groups, and between children with high and low TAQ overactivity scores within syndromes. RESULTS: M10 and TAQ overactivity scores were strongly positively correlated for children with Angelman syndrome and Smith-Magenis syndrome. M10 did not substantially differ between the syndrome and typically-developing groups. Higher early morning activity and lower evening activity was observed across all syndrome groups relative to typically-developing peers. High and low TAQ group comparisons revealed syndrome-specific profiles of overactivity, persisting throughout the day in Angelman syndrome, occurring during the early morning and early afternoon in Smith-Magenis syndrome, and manifesting briefly in the evening in tuberous sclerosis complex. DISCUSSION: These findings provide some support for the sensitivity of actigraphy to overactivity in children with rare genetic syndromes, and offer syndrome-specific temporal descriptions of overactivity. The findings advance existing descriptions of overactivity, provided by questionnaire techniques, in children with rare genetic syndromes and have implications for the measurement of overactivity. Future studies should examine the impact of syndrome-related characteristics on actigraphy-defined activity and overactivity estimates from actigraphy and questionnaire techniques.


Subject(s)
Angelman Syndrome , Intellectual Disability , Smith-Magenis Syndrome , Tuberous Sclerosis , Child , Humans , Smith-Magenis Syndrome/complications , Angelman Syndrome/complications , Angelman Syndrome/diagnosis , Tuberous Sclerosis/complications , Intellectual Disability/complications
2.
Front Pharmacol ; 15: 1293458, 2024.
Article in English | MEDLINE | ID: mdl-38482056

ABSTRACT

Staphylococcus aureus (S. aureus) is a commensal bacterium and an opportunistic pathogen causing a wide variety of infections ranging from localized skin and soft tissue infections to life-threatening severe bacteremia, osteomyelitis, endocarditis, atopic dermatitis, prosthetic joint infection, staphylococcal food poisoning, medical device-related infections, and pneumonia. It is attributed to an acquired resistant gene, mecA, encoding penicillin-binding protein 2a (PBP2a). PBP2a is an essential protein responsible for the resistivity of methicillin-resistant S. aureus (MRSA) to various beta-lactam antibiotics. The antimicrobial treatment alternatives for MRSA are increasingly limited. Therefore, developing alternative therapeutic options for its treatment is the need of the day. Phthalimides and their N-substituted derivatives are of biological importance as they possess extensive biological and pharmaceutical properties and can serve as an excellent therapeutic option for MRSA. This study uses three chiral phthalimides (FIA, FIB, and FIC) to check their in silico and in vitro inhibitory effects. Molecular docking of these chiral phthalimides against PBP2a of MRSA was performed initially. After promising results, these novel compounds were screened through the agar-well diffusion method and micro-broth dilution assay to investigate their in vitro inhibitory activities with FIB being the strongest anti-staphylococcal agent yielding a 21 mm zone of inhibition and a minimum inhibitory concentration (MIC) of 0.022 ug, respectively. The zones of inhibition obtained through the in vitro activity showed that these chiral phthalimides possess substantial anti-MRSA activities and have the potential to be considered as alternative chemotherapeutics to treat the infections caused by MRSA after the confirmation of their cytotoxic and pharmacokinetic studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...