Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38930855

ABSTRACT

Zero-dimensional graphene quantum dots (GQDs) present unique optoelectronic properties in the large-spectrum range from UV to visible. However, the origin of luminescence in GQDs is still a debatable question. Therefore, the present work investigates the features of trap-mediated and edge-state-functionalized group-associated luminescence enhancement of GQDs. The attached functional groups' involvement in the upsurge of photoluminescence has been discussed theoretically as well as experimentally. In addition, the role of the aromatic ring, the functional group attached, and their positions of attachment to the aromatic ring to tune the emission wavelength and Raman modes have been elucidated theoretically as well as experimentally. We found that in the case of the -OH group attached outside of the aromatic ring, the long-range π hybridization dominates, which suggests that the emission from this model can be dictated by long-range π hybridization. In particular, we found that oxygen-containing functional groups attached outside of the aromatic ring are the main source of the luminescence signature in GQDs. Furthermore, density functional theory (DFT) indicates that the -OH functional group attached outside of the aromatic ring perfectly matched with our experimental results, as the experimental bandgap (2.407 eV) is comparable with the theoretical simulated bandgap (2.399 eV) of the -OH group attached outside of the aromatic ring.

2.
Nanoscale Horiz ; 8(11): 1577-1587, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37680179

ABSTRACT

Hybrid organic-inorganic metal halide perovskites (HOIPs) have gained significant research interest due to their tunable optoelectronic properties and ease of fabrication. Enhancing the stability and efficiency of perovskite materials can be achieved through the passivation of defective surfaces and the improvement of interfacial properties. In this study, we introduce a zwitterionic compound, PPS (3-(1-pyridinio)-1-propanesulfonate), as a bifunctional material that serves as an additive and an interlayer. Incorporating PPS into the perovskite film effectively reduces both positively and negatively charged defects, leading to improved surface morphology and a reduction in undesired charge carrier recombination. Additionally, the formation of a PPS interlayer on SnO2 improves the SnO2/perovskite interfacial characteristics, thereby enhancing charge carrier extraction. As a result, the photodetector exhibits a low dark current of 6.05 × 10-11 A, an excellent responsivity of 5.93 A W-1, a detectivity of 1.51 × 1013 J, and an on/off ratio of 1.2 × 104 under open-air conditions. Moreover, the device demonstrates outstanding stability, retaining 80% of its original responsivity in an ambient environment. This work highlights the great potential of dual-functional materials for defect passivation in future optoelectronic devices, emphasizing the importance of surface modification and interface engineering for improved performance and stability.

3.
Nanomaterials (Basel) ; 12(13)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35808028

ABSTRACT

Temperature-, excitation wavelength-, and excitation power-dependent photoluminescence (PL) spectroscopy have been utilized to investigate the orientation-modulated near band edge emission (NBE) and deep level emission (DLE) of ZnO single crystals (SCs). The near-band-edge emission of ZnO SC with <0001> orientation exhibits strong and sharp emission intensity with suppressed deep level defects (mostly caused by oxygen vacancies Vo). Furthermore, Raman analysis reveals that <0001> orientation has dominant E2 (high) and E2 (low) modes, indicating that this direction has better crystallinity. At low temperature, the neutral donor-to-bound exciton (DoX) transition dominates, regardless of the orientation, according to the temperature-dependent PL spectra. Moreover, free-exciton (FX) transition emerges at higher temperatures in all orientations. The PL intensity dependence on the excitation power has been described in terms of power-law (I~Lα). Our results demonstrate that the α for <0001>, <1120>, and <1010> is (1.148), (1.180), and (1.184) respectively. In short, the comprehensive PL analysis suggests that DoX transitions are dominant in the NBE region, whereas oxygen vacancies (Vo) are the dominant deep levels in ZnO. In addition, the <0001> orientation contains fewer Vo-related defects with intense excitonic emission in the near band edge region than other counterparts, even at high temperature (~543 K). These results indicate that <0001> growth direction is favorable for fabricating ZnO-based highly efficient optoelectronic devices.

4.
Nanomaterials (Basel) ; 12(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35055209

ABSTRACT

Organic-inorganic hybrid perovskite photodetectors are gaining much interest recently for their high performance in photodetection, due to excellent light absorption, low cost, and ease of fabrication. Lower defect density and large grain size are always favorable for efficient and stable devices. Herein, we applied the interface engineering technique for hybrid trilayer (TiO2/graphene oxide/perovskite) photodetector to attain better crystallinity and defect passivation. The graphene oxide (GO) sandwich layer has been introduced in the perovskite photodetector for improved crystallization, better charge extraction, low dark current, and enhanced carrier lifetime. Moreover, the trilayer photodetector exhibits improved device performance with a high on/off ratio of 1.3 × 104, high responsivity of 3.38 AW-1, and low dark current of 1.55 × 10-11 A. The insertion of the GO layer also suppressed the perovskite degradation process and consequently improved the device stability. The current study focuses on the significance of interface engineering to boost device performance by improving interfacial defect passivation and better carrier transport.

5.
Nanoscale Res Lett ; 14(1): 116, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30941516

ABSTRACT

Photovoltaic performances of CsPbI2Br solar cells are still lower than those of hybrid inorganic-organic perovskite solar cells, and researchers are exploring ways to improve their efficiencies. Due to its higher thermal stability in comparison with the generally studied hybrid inorganic-organic perovskites, all-inorganic CsPbI2Br has recently attracted great attention. By utilizing the combination of MnCl2 and ZnCl2 particles doping to modulate film growth, it is found that MnCl2 and ZnCl2 particles infiltrate into the holes of the CsPbI2Br lattice through the growth procedure, leading to suppressed nucleation and reduced growth rate. The combination assists to achieve higher CsPbI2Br crystalline grains for increased Jsc as high as 15.66 mA cm-2 and FF as large as 73.37%. It is indicated that a specific combination of ZnCl2-MnCl2 doping can fundamentally improve the film surface morphology, reduce trap density, and suppress the recombination of carriers. Consequently, power conversion efficiency (PCE) is significantly improved from 13.47 to 14.15% compared with the reference device without doping.

6.
Nanoscale Res Lett ; 13(1): 399, 2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30523425

ABSTRACT

Due to their outstanding performance, low cost, ease of fabrication, diverse photonic, and optoelectronic applications, metal halides perovskite have attracted extensive interest in photodetector applications. Currently, devices made by metal oxides, metal sulfides, and 2D materials had achieved good responsivity, but suffered from high dark current, slow response speed, small on-off ratio, and poor stability. Whole performances of these photodetectors are not satisfactory. Here, a lateral perovskite (CH3NH3PbBr3)/Ethanolamine/TiO2 (in ethanol) trilayer photodetector is designed for achieving high performance. EA treatment enhances electron extraction and reduces undesired recombination. This trilayer device shows good performances with low dark current of 1.5 × 10-11 A, high on-off ratio of 2700, high photodetectivity of 1.51 × 1012 Jones, high responsivity of 0.13 A W-1, and high stability, comparative to conventional single layer devices. This work provides the way to improve the performance of metal halide perovskite photodetectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...