Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36234225

ABSTRACT

Thin films of lead sulfide (PbS) are being extensively used for the fabrication of optoelectronic devices for commercial and military applications. In the present work, PbS films were fabricated onto a soda lime glass substrate by using an electron beam (e-beam) evaporation technique at a substrate temperature of 300 °C. Samples were annealed in an open atmosphere at a temperature range of 200-450 °C for 2 h. The deposited films were characterized for structural, optical, and electrical properties. Structural properties of PbS have been studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), and Rutherford backscattering spectrometry (RBS). The results of XRD showed that the PbS thin film was crystalline in nature at room temperature with cubic crystal structure (galena) and preferential (111) and orientation (022). The morphology of the thin films was studied by FESEM, which also showed uniform and continuous deposition without any peel-off and patches. EDS analysis was performed to confirm the presence of lead and sulfur in as-deposited and annealed films. The thickness of the PbS film was found to be 172 nm, which is slightly greater than the intended thickness of 150 nm, determined by RBS. Ultraviolet-Visible-Near-Infrared (UV-Vis-NIR) spectroscopy revealed the maximum transmittance of ~25% for as-deposited films, with an increase of 74% in annealed films. The band gap of PbS was found in the range of 2.12-2.78 eV for as-deposited and annealed films. Hall measurement confirmed the carriers are p-type in nature. Carrier concentration, mobility of the carriers, conductivity, and sheet resistance are directly determined by Hall-effect measurement. The as-deposited sample showed a conductivity of 5.45 × 10-4 S/m, which gradually reduced to 1.21 × 10-5 S/m due to the composite nature of films (lead sulfide along with lead oxide). Furthermore, the present work also reflects the control of properties by controlling the amount of PbO present in the PbS films which are suitable for various applications (such as IR sensors).

2.
Materials (Basel) ; 15(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683204

ABSTRACT

Enhanced non-linearity and asymmetric behavior of the Cr/metal oxide diode is reported, with the addition of two insulator layers of SnO2 and NiO to form the metal-insulator-insulator-metal (MIIM) configuration. Such an MIIM diode shows potential for various applications (rectifiers and electronic equipment) which enable the femtosecond fast intoxication in MIIM diodes. In this work, nanostructured multi-layer Cr/SnO2/NiO/Cr coatings were fabricated via e-beam evaporation with the following thicknesses: 150 nm/20 nm/10 nm/150 nm. Coatings were characterized via Rutherford backscattering (RBS), scanning electron microscopy (SEM), and two-probe conductivity testing. RBS confirmed the layered structure and optimal stoichiometry of the coatings. A non-linear and asymmetric behavior at <1.5 V applied bias with the non-linearity maximum of 2.6 V−1 and the maximum sensitivity of 9.0 V−1 at the DC bias point was observed. The promising performance of the coating is due to two insulating layers which enables resonant tunneling and/or step-tunneling. Based on the properties, the present multi-layer coatings can be employed for MIIM application.

3.
Materials (Basel) ; 15(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683236

ABSTRACT

Nanocomposite multi-layer TiO2/V2O5/TiO2 thin films were prepared via electron-beam evaporation using high-purity targets (TiO2 and V2O5 purity > 99.9%) at substrate temperatures of 270 °C (TiO2) and 25 °C (V2O5) under a partial pressure of oxygen of 2 × 10−4 mbar to maintain the stoichiometry. Rutherford backscattering spectrometry was used to confirm the layer structure and the optimal stoichiometry of the thin films, with a particle size of 20 to 40 nm. The thin films showed an optical transmittance of ~78% in the visible region and a reflectance of ~90% in the infrared. A decrease in transmittance was observed due to the greater cumulative thickness of the three layers and multiple reflections at the interface of the layers. The optical bandgap of the TiO2 mono-layer was ~3.49 eV, whereas that of the multi-layer TiO2/V2O5/TiO2 reached ~3.51 eV. The increase in the optical bandgap was due to the inter-diffusion of the layers at an elevated substrate temperature during the deposition. The intrinsic, structural, and morphological features of the TiO2/V2O5/TiO2 thin films suggest their efficient use as a solar water heater system.

4.
Materials (Basel) ; 14(16)2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34443057

ABSTRACT

Thin films of Cd1-xMgxO (CdMgO) (0 ≤ x ≤ 1) were investigated by depositing the films on glass substrates using the co-evaporation technique. The structural, surface morphological, optical, and electrical characteristics of these films were studied as a function of Mg content after annealing at 350 °C. The XRD analysis showed that the deposited films had an amorphous nature. The grain size of the films reduced as the Mg concentration increased, as evidenced by the surface morphology, and EDAX supported the existence of Mg content. It was observed that as the films were annealed, the transmittance of the CdMgO films saw an increase of up to 85%. The blue shift of the absorption edge was observed by the increase of Mg content, which was useful for enhancing the efficiency of solar cells. The optical band gap increased from 2.45 to 6.02 eV as the Mg content increased. With increased Mg content, the refractive index reduced from 2.49 to 1.735, and electrical resistivity increased from 535 Ω cm to 1.57 × 106 Ω cm.

5.
Recent Pat Nanotechnol ; 10(1): 26-43, 2016.
Article in English | MEDLINE | ID: mdl-27018271

ABSTRACT

BACKGROUND: Germanium (Ge) nanostructures exhibit wide range of potential applications in the field of nanoscale devices due to their excellent optical and electrical properties and have gained significant interest due to the Bohr exciton radius. Bohr radius of Ge (24.3 nm) is larger than that of Si (4.9 nm), leading to quantum size effects and nanostructures with controllable bandgaps. METHODS: This article provides a comprehensive review on various electrolytes for electrodeposition procedures developed to obtain the Ge nanostructures of desired structure, diameter, and density. We discuss the growth mechanisms and influence of different parameters such as type of solution, concentration, and value of applied potential or current density. RESULTS: The ionic liquids can be used for the development of Ge nanostructures and provide extensive electrochemical windows for electrodeposition. The obtained SixGe1-x structures also exhibited strong color change (from red to blue) at room temperature during the electrodeposition, which is likely to be due to a quantum size effect. CONCLUSION: The main advantages of the ionic liquids are 'it does not decompose', easy to purify and dry. Moreover, it exhibits fairly extensive electrochemical windows greater than 5 V for electrodeposition. Electrodeposition of SixGe1-x nanostructures from ionic liquids is quite a favorable process. The 3DOM Ge electrode is a promising material for nextgeneration lithium ion battery because of its high irreversible specific capacity. Few relevant patents to the topic have been reviewed and cited.

6.
Recent Pat Nanotechnol ; 10(1): 77-82, 2016.
Article in English | MEDLINE | ID: mdl-27018275

ABSTRACT

BACKGROUND: It is well-known that multi-layer films with nanostructure can give novel properties by interfacial phenomenon and quantum confinement effects. Nanostructured multi-layer thin films are presently being analyzed for their vast applications in the area of optoelectronics technology particularly photovoltaics. Hereof, two dimensional thin films with nanostructure are of prime importance due to their structure dependent optical, electrical, and opto-electronic properties. It has been revealed that these films exhibit quantum confinement effects with band gap engineering. The main focus of the research is to evaluate the effect on structural and optical properties with number of layers. METHODS: Nanostructured SnO2-Ge multi-layer thin films were fabricated using electron beam evaporation and resistive heating techniques. Alternate layers of SnO2 and Ge were deposited on glass substrate at a substrate temperature of 300 °C in order to obtain uniform and homogeneous deposition. The substrate temperature of 300 °C has been determined to be effective for the deposition of these multi-layer films from our previous studies. The films were characterized by investigating their structural and optical properties. The structural properties of the as-deposited films were characterized by Rutherford Backscattering Spectroscopy (RBS) and Raman spectroscopy and optical properties by Ultra-Violet-Near infrared (UV-VIS-NIR) spectroscopy. RESULTS: RBS studies confirmed that the layer structure has been effectively formed. Raman spectroscopy results show that the peaks of both Ge and SnO2 shifts towards lower wavenumbers (in comparison with bulk Ge and SnO2, suggesting that the films consist of nanostructures and demonstrate quantum confinement effects. UV-VIS-NIR spectroscopy showed an increase in the band gap energy of Ge and SnO2 and shifting of transmittance curves toward higher wavelength by increasing the number of layers. The band gap lies in the range of 0.9 to 1.2 eV for Ge, while for SnO2, it lies between 1.7 to 2.1 eV. CONCLUSION: Analysis of results suggests that the nanostructured SnO2-Ge multi-layer thin film can work as heterojunction materials with quantum confinement effects. Accordingly, the present SnO2-Ge multi-layer films may be employed for photovoltaic applications. Few relevant patents to the topic have been reviewed and cited.

7.
J Colloid Interface Sci ; 343(1): 271-80, 2010 Mar 01.
Article in English | MEDLINE | ID: mdl-20045525

ABSTRACT

Multilayer TiO(2)-Ge thin films have been deposited using electron beam evaporation and resistive heating. The thickness of the TiO(2) layers is 20 nm, while the thickness of the Ge layers varies from 2 to 20 nm with a step of 2 nm away from the substrate. These films were characterized by studying their optical, electrical, and structural properties. The films were annealed at various temperatures up to 500 degrees C for 2 h. The films are amorphous up to an annealing temperature of 400 degrees C, although Raman spectra suggest short-range ordering (and adjustments). The films annealed at 450 and 500 degrees C exhibit X-ray reflections of Ge and anatase TiO(2). Illumination in sunlight increases the conductivity of the as-deposited and annealed films. The band gap of the amorphous films changes from 1.27 to 1.41 eV up to 400 degrees C; the major contribution is possibly through direct transition. Two band gap regimes are clearly seen after 450 and 500 degrees C, which have been assigned to an indirect band gap at about 1.2 eV and a direct band gap at about 1.8 eV. Conductivity of the multilayer films has been higher than that of pure Ge film. The conductivity increases with annealing temperature with abrupt increase at about 380 degrees C. The results imply that the TiO(2)-Ge multilayer films may be employed as heterojunctions with tunable band gap energy as related to quantum confinement effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...