Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 9(11): 2325-2339, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37802046

ABSTRACT

Naturally secreted outer membrane vesicles (OMVs) from gut microbes carry diverse cargo, including proteins, nucleic acids, toxins, and many unidentified secretory factors. Bacterial OMVs can shuttle molecules across different cell types as a generalized secretion system, facilitating bacterial pathogenicity and self-survival. Numerous mucosal pathogens, including Campylobacter jejuni (C. jejuni), share a mechanism of harmonized secretion of major virulence factors. Intriguingly, as a common gut pathogen, C. jejuni lacks some classical virulence-associated secretion systems; alternatively, it often employs nanosized lipid-bound OMVs as an intensive strategy to deliver toxins, including secretory proteins, into the target cells. To better understand how the biophysical and compositional attributes of natural OMVs of C. jejuni regulate their cellular interactions to induce a biologically relevant host response, we conducted an in-depth morphological and compositional analysis of naturally secreted OMVs of C. jejuni. Next, we focused on understanding the mechanism of host cell-specific OMVs uptake from the extracellular milieu. We showed that intracellular perfusion of OMVs is mediated by cytosolic as well as multiple endocytic uptake processes due to the heterogenic nature, abundance of surface proteins, and membrane phospholipids acquired from the source bacteria. Furthermore, we used human and avian cells as two different host targets to provide evidence of target cell-specific preferential uptake of OMVs. Together, the present study provides insight into the unique functionality of natural OMVs of C. jejuni at the cellular interface, upholding their potential for multimodal use as prophylactic and therapeutic carriers.


Subject(s)
Campylobacter jejuni , Extracellular Vesicles , Humans , Campylobacter jejuni/metabolism , Biological Transport , Virulence Factors/metabolism , Virulence
2.
STAR Protoc ; 3(2): 101368, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35573481

ABSTRACT

The bacterial Type VI Secretion System (T6SS) functions as a nanomachine used by many gut pathogens. In the present protocol, we outlined how such molecular activities during interspecies interaction can be demonstrated at a population level. To this end, we first present a comprehensive protocol for isolation, identification, and functional characterization of T6SS-positive Campylobacter jejuni. Further, we developed straightforward techniques for unraveling how the T6SS targets prey populations and host cells when growing with or without environmental stressors. For complete details on the use and execution of this protocol, please refer to Gupta et al. (2021).


Subject(s)
Campylobacter jejuni , Type VI Secretion Systems , Humans , Type VI Secretion Systems/genetics
3.
iScience ; 24(12): 103507, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34934926

ABSTRACT

As a common gut pathogen, Campylobacter jejuni (C. jejuni) harbors the Type VI Secretion System (T6SS) that injects toxic effectors into neighboring cells, modulating microbial competitions in the harsh gut environment. Using bile salt as a natural stressor and T6SS-positive C. jejuni as a predator, we show that T6SS activity could entail a cost during bacterial predation under environmental stress. Our data suggest bile salt influx and subsequent DNA damage due to the prey-driven activation of the T6SS. We further combined experiments and mathematical modeling to explore how the stress-induced "predation cost" determines ecological outcomes. Consistent with a population-dynamics model, we found predator extinction above a critical bile salt concentration and prey-predator coexistence below this level. Moreover, we utilized the predation cost as an effective strategy facilitating host defense against C. jejuni infection. Together, we elucidate how predator dominance versus extinction emerges from the interplay between environmental stress and the T6SS machinery.

4.
Gut Pathog ; 13(1): 48, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34330327

ABSTRACT

BACKGROUND: Campylobacter jejuni (C. jejuni) is accountable for more than 400 million cases of gastroenteritis each year and is listed as a high-priority gut pathogen by the World Health Organization (WHO). Although the acute infection of C. jejuni (campylobacteriosis) is commonly treated with macrolides and fluoroquinolones, the emergence of antibiotic resistance among C. jejuni warrants the need for an alternative approach to control campylobacteriosis in humans. To this end, vaccines remain a safe, effective, and widely accepted strategy for controlling emerging and re-emerging infectious diseases. In search of a suitable vaccine against campylobacteriosis, recently, we demonstrated the potential of recombinant Haemolysin co-regulated protein (Hcp) of C. jejuni Type VI secretion system (T6SS) in imparting significant immune-protection against cecal colonization of C. jejuni; however, in the avian model. Since clinical features of human campylobacteriosis are more complicated than the avians, we explored the potential of Hcp as a T6SS targeted vaccine in a murine model as a more reliable and reproducible experimental host to study vaccine-induced immune-protection against C. jejuni. Because C. jejuni primarily utilizes the mucosal route for host pathogenesis, we analyzed the immunogenicity of a mucosally deliverable bioengineered Lactic acid bacteria (LAB), Lactococcus lactis (L. lactis), expressing Hcp. Considering the role of Hcp in both structural (membrane-bound) and functional (effector protein) exhibition of C. jejuni T6SS, a head-to-head comparison of two different forms of recombinant LAB vectors (cell wall anchored and secreted form of Hcp) were tested and assessed for the immune phenotypes of each modality in BALB/c mice. RESULTS: We show that regardless of the Hcp protein localization, mucosal delivery of bioengineered LAB vector expressing Hcp induced high-level production of antigen-specific neutralizing antibody (sIgA) in the gut with the potential to reduce the cecal load of C. jejuni in mice. CONCLUSION: Together with the non-commensal nature of L. lactis, short gut transit time in humans, and the ability to express the heterologous protein in the gut, the present study highlights the benefits of bioengineered LAB vectors based mucosal vaccine modality against C. jejuni without the risk of immunotolerance.

5.
ACS Infect Dis ; 7(5): 1186-1199, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33724795

ABSTRACT

Acute diarrheal illness and gastroenteritis caused by Campylobacter jejuni infection remain significant public health risks in developing countries with substantial mortality and morbidity in humans, particularly in children under the age of five. Genetic diversities among Campylobacter jejuni and limited understanding of immunological correlations of host protection remain primary impediments for developing an effective measure to controlCampylobacter infection. Moreover, the lack of a reliable in vivo model to mimic natural infection against Campylobacter jejuni has substantially delayed the vaccine-development process. Given the role of bacterial outer membrane associated proteins in intestinal adherence and invasion as well as modulating dynamic interplay between host and pathogens, bacterial outer-membrane vesicles have emerged as a potential vaccine target against a number of gut pathogens, including Campylobacter jejuni. Here, we describe a mucosal vaccine strategy using chitosan-coated outer-membrane vesicles to induce specific immune responses against Campylobacter jejuni in mice. To overcome the challenges of mucosal delivery of outer membrane vesicles in terms of exposure to variable pH and risk of enzymatic degradation, we preferentially used chitosan as a nontoxic, mucoadhesive polymer. We show that intragastric delivery of chitosan-coated outer-membrane vesicles imparts significant immune protection against Campylobacter jejuni with high level local and systemic antibody production. Further, immunization with the outer membrane vesicles resulted in potent cellular responses with an increased CD4+ and CD8+ T cell population. Moreover, significant upregulation of IFN-γ and IL-6 gene expression suggests that mucosal delivery of outer membrane vesicles promotes a Th1/Th2 mixed-type immune response. Together, as an acellular and nonreplicating canonical end product of bacterial secretion, mucosal delivery of outer membrane vesicles may represent a promising platform for developing an effective vaccine againstCampylobacter jejuni.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Gastrointestinal Microbiome , Animals , Bacterial Outer Membrane Proteins , Campylobacter Infections/prevention & control , Immunization , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...