Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1659-1670, 2024 03.
Article in English | MEDLINE | ID: mdl-37704774

ABSTRACT

Aligarh region is well known for its lock industry. This lock industry utilises nickel for electroplating. There have been informal reports of infertility in men and women living near the lock industry. We analysed field water samples to investigate this link, and the results showed considerable nickel contamination. To further validate our results, we exposed male rats to relevant nickel levels in drinking water. This experimental exposure resulted in abnormal sperm morphology, decline in sperm count, significant change in activities of antioxidant enzymes, pronounced oxidative stress in the rat spermatocytes and decrease in serum testosterone level, as well as damage in the hypothalamus and pituitary (in all cases, the changes were most significant at the highest concentration used i.e 2.5 mg/l). The breeding experiments showed decline in live birth rate, while pups did not survive post birth in cages where males were given 2 and 2.5 mg/l concentrations of nickel in drinking water prior to mating. Our data strongly indicate a link between industrial nickel exposure and male infertility.


Subject(s)
Drinking Water , Infertility, Male , Humans , Male , Female , Rats , Animals , Testis/metabolism , Nickel/toxicity , Nickel/metabolism , Drinking Water/metabolism , Semen , Oxidative Stress , Infertility, Male/chemically induced , Infertility, Male/metabolism , Cell Death
2.
Int J Biol Macromol ; 254(Pt 3): 127913, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37939772

ABSTRACT

This is the first study that explored the potential use of Zizyphus mauritiana seed extract (ZSE) to synthesize nano-fluorohydroxyapatite/carboxymethyl chitosan nanocomposite scaffolds at different concentrations (CFZ1, CFZ2 and CFZ3) using co-precipitation method. The proposed scaffolds showed presence of intermolecular H bonding interactions between the constituents, according to the FTIR. The mechanical studies revealed shore hardness of 72 ± 4.6 and optimal compressive modulus in case of CFZ3 [1654.48 ± 1.6 MPa], that was comparable with that of human cortical bone. The SEM, TEM and platelet adhesion images corroborated uniformly distributed needle like particles in case of CFZ3 with an average size ranging from 22 to 26 nm, linked rough morphology, and appropriate hemocompatibility. The markedly up regulation in the ALP activity and protein adsorption upon increasing ZSE concentration demonstrated that CFZ nanocomposite scaffolds were compatible with osteoblastic cells relative to CF nanocomposite. The cytotoxicity study indicated that CFZ nanocomposite do not induce toxicity over MG-63 and did not aggravate LDH leakage in contrast to CF. The histopathological investigations on albino rats confirmed significantly improved regeneration of bone in the repair of a critical-size [8 mm] calvarium defect. Therefore, CFZ3 nanocomposite scaffold represents a simple, off-the-shelf solution to the combined challenges associated with bone defects.


Subject(s)
Chitosan , Nanocomposites , Ziziphus , Rats , Animals , Humans , Tissue Scaffolds , Tissue Engineering/methods , Bone Regeneration , Durapatite/pharmacology
3.
Heliyon ; 9(5): e16240, 2023 May.
Article in English | MEDLINE | ID: mdl-37234629

ABSTRACT

Pentachlorophenol (PCP) is an excessively used wood preservative and pesticide, which has resulted in human exposure raising concerns about its potential toxic effects. This study is designed to evaluate the hemotoxicity of PCP in adult rats. Wistar rats were orally administered PCP (25-150 mg/kg bw) for five days while untreated (control) rats received corn oil. Animals were sacrificed, blood was taken and fractionated into plasma and red blood cells (RBC). PCP administration increased methemoglobin formation but decreased methemoglobin reductase activity. Significantly increased hydrogen peroxide level indicates initiation of oxidative stress condition in blood. PCP increased the oxidation of thiols, proteins and lipids, lowered glutathione levels, and compromised the antioxidant status of RBC in treated rats. Enzymes of the pathways of glucose breakdown, glycolysis and phosphogluconate pathway, were inhibited. Markers of liver damage were increased in the plasma of PCP-treated rats suggesting hepatotoxicity. This was confirmed by histopathological analysis of stained liver sections. Activity of xanthine oxidase, a reactive oxygen species (ROS) generating pro-oxidant enzyme, was increased. These hematological changes could be a result of the increased generation of ROS or direct chemical transformation by transient reaction species. These results show that PCP induces redox imbalance, diminishes antioxidant potential, inhibits metabolic pathways, and oxidizes cellular components in rat blood. This study suggests an elaborated possible molecular mechanism of PCP toxicity, and similar compounds so that methods can be devised to minimize its damaging effect.

4.
Food Chem Toxicol ; 176: 113745, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37028744

ABSTRACT

INTRODUCTION: Pentachlorophenol (PCP) is used as pesticide and wood preservative. We have previously shown that PCP causes oxidative damage in rat intestine. AIM: This study aimed to delineate the possible therapeutic potential of curcumin (CUR) and gallic acid (GA) against PCP-induced damage in rat intestine. METHODS: PCP alone group received 125 mg PCP/kg body weight/day orally for 4 days. Animals in combination groups received CUR or GA (100 mg/kg bw) for 18 days and PCP (125 mg/kg bw) for the last four days. Rats were sacrificed and intestinal preparations were analyzed for various parameters. RESULTS: Administration of PCP alone altered the activities of metabolic, antioxidant and brush border membrane enzymes. It also increased DNA-protein crosslinking and DNA-strand scission. Animals in combinations groups showed significant amelioration against PCP-induced oxidative damage. Histological abrasions were seen in PCP alone group which were reduced in the intestines of combination groups. CUR was more effective protectant than GA. CONCLUSIONS: CUR and GA protected rat intestine from PCP-mediated changes in the activities of metabolic, antioxidant and brush border membrane enzymes. They also prevented DNA damage and histological abrasions. The antioxidant character of CUR and GA may be responsible for the diminution of PCP-mediated oxidative damage.


Subject(s)
Curcumin , Pentachlorophenol , Rats , Animals , Antioxidants/pharmacology , Gallic Acid/pharmacology , Pentachlorophenol/toxicity , Curcumin/pharmacology , Oxidative Stress , Administration, Oral , Intestines
5.
Molecules ; 28(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903437

ABSTRACT

Therapeutics, based on small interfering RNA (siRNA), have demonstrated tremendous potential for treating cancer. However, issues such as non-specific targeting, premature degradation, and the intrinsic toxicity of the siRNA, have to be solved before they are ready for use in translational medicines. To address these challenges, nanotechnology-based tools might help to shield siRNA and ensure its specific delivery to the target site. Besides playing a crucial role in prostaglandin synthesis, the cyclo-oxygenase-2 (COX-2) enzyme has been reported to mediate carcinogenesis in various types of cancer, including hepatocellular carcinoma (HCC). We encapsulated COX-2-specific siRNA in Bacillus subtilis membrane lipid-based liposomes (subtilosomes) and evaluated their potential in the treatment of diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Our findings suggested that the subtilosome-based formulation was stable, releasing COX-2 siRNA in a sustained manner, and has the potential to abruptly release encapsulated material at acidic pH. The fusogenic property of subtilosomes was revealed by FRET, fluorescence dequenching, content-mixing assay, etc. The subtilosome-based siRNA formulation was successful in inhibiting TNF-α expression in the experimental animals. The apoptosis study indicated that the subtilosomized siRNA inhibits DEN-induced carcinogenesis more effectively than free siRNA. The as-developed formulation also suppressed COX-2 expression, which in turn up-regulated the expression of wild-type p53 and Bax on one hand and down-regulated Bcl-2 expression on the other. The survival data established the increased efficacy of subtilosome-encapsulated COX-2 siRNA against hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Diethylnitrosamine/pharmacology , RNA, Small Interfering/pharmacology , Cyclooxygenase 2 , Apoptosis , Carcinogenesis
6.
Pestic Biochem Physiol ; 190: 105318, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36740338

ABSTRACT

Pentachlorophenol (PCP) is a synthetic organochlorine compound that is widely used in biocide and pesticide industries, and in preservation of wood, fence posts, cross arms and power line poles. Humans are usually exposed to PCP through air, contaminated water and food. PCP enters the body and adversely affects liver, gastrointestinal tract, kidney and lungs. PCP is a highly toxic class 2B or probable human carcinogen that produces large amount of reactive oxygen species (ROS) within cells. This work aimed to determine PCP-induced oxidative damage in rat kidney. Adult rats were given PCP (25, 50, 100, 150 mg/kg body weight), in corn oil, once a day for 5 days while control rats were given similar amount of corn oil by oral gavage. PCP increased hydrogen peroxide level and oxidation of thiols, proteins and lipids. The antioxidant status of kidney cells was compromised in PCP treated rats while enzymes of brush border membrane (BBM) and carbohydrate metabolism were inhibited. Plasma level of creatinine and urea was also increased. Administration of PCP increased DNA fragmentation, cross-linking of DNA to proteins and DNA strand scission in kidney. Histological studies supported biochemical findings and showed significant damage in the kidneys of PCP-treated rats. These changes could be due to redox imbalance or direct chemical modification by PCP or its metabolites. These results signify that PCP-induced oxidative stress causes nephrotoxicity, dysfunction of BBM enzymes and DNA damage.


Subject(s)
Pentachlorophenol , Rats , Humans , Animals , Pentachlorophenol/toxicity , Pentachlorophenol/metabolism , Microvilli/metabolism , Corn Oil/metabolism , Rats, Wistar , Kidney/pathology , Oxidation-Reduction , Oxidative Stress , DNA Damage
7.
Biol Trace Elem Res ; 201(7): 3367-3380, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36068418

ABSTRACT

Copper (Cu) is a heavy metal that is widely used in industries and is also an essential micronutrient for living beings. However, excess Cu is toxic and human exposure to high levels of this metal results in numerous adverse health effects. We have investigated the effect of oral administration of copper chloride (CuCl2), a Cu(II) compound, on various parameters of oxidative stress, cellular metabolism, and DNA integrity in the rat kidney. This was done to delineate the molecular mechanism of Cu(II) toxicity. Adult male rats were randomly divided into five groups. Animals in four CuCl2-treated groups were separately administered single acute oral dose of CuCl2 at 5, 15, 30, and 40 mg/kg body weight. Animals in the fifth group were not given CuCl2 and served as the control. All rats were sacrificed 24 h after the dose of CuCl2 and their kidneys removed. CuCl2 administration led to significant alterations in enzymatic and non-enzymatic parameters of oxidative stress. It changed the activities of metabolic and membrane bound enzymes and also decreased the activities of brush border membrane enzymes. CuCl2 treatment dose-dependently enhanced DNA damage and DNA-protein crosslinking in renal cells, when compared to the control group. The administration of CuCl2 also resulted in marked morphological changes in the kidney, with more prominent alterations at higher doses of CuCl2. These results clearly show that CuCl2 impairs the antioxidant defense system resulting in oxidative damage to the kidney.


Subject(s)
Antioxidants , Copper , Humans , Male , Rats , Animals , Antioxidants/metabolism , Copper/metabolism , Chlorides/pharmacology , Oxidative Stress , Kidney/metabolism , Administration, Oral , DNA Damage
8.
Toxicol Res (Camb) ; 11(4): 616-627, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36051662

ABSTRACT

Pentachlorophenol (PCP) is a broad spectrum biocide that has many domestic and industrial applications. PCP enters the environment due to its wide use, especially as a wood preservative. Human exposure to PCP is through contaminated water and adulterated food products. PCP is highly toxic and is classified as class 2B or probable human carcinogen. In this study, we explored the effect of PCP on rat intestine. Adult rats were orally given different doses of PCP (25-150-mg/kg body weight/day) in corn oil for 5 days, whereas controls were given similar amount of corn oil. The rats were sacrificed 24 h after the last treatment. A marked increase in lipid peroxidation, carbonyl content, and hydrogen peroxide level was seen. The glutathione and sulfhydryl group content was decreased in all PCP treated groups. This strongly suggests the generation of reactive oxygen species (ROS) in the intestine. PCP administration suppressed carbohydrate metabolism, inhibited enzymes of brush border membrane (BBM), and antioxidant defense system. It also led to increase in DNA damage, which was evident from comet assay, DNA-protein cross-linking, and DNA fragmentation. Histological studies supported the biochemical results showing marked dose-dependent tissue damage in intestines from PCP treated animals. This study reports for the first time that oral administration of PCP induces ROS, impairs the antioxidant system, damages DNA, and alters the enzyme activities of BBM and metabolic pathways in rat intestine.

9.
Pestic Biochem Physiol ; 178: 104915, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34446191

ABSTRACT

Pesticides are extensively employed worldwide, especially in agriculture to control weeds, insect infestation and diseases. Besides their targets, pesticides can also affect the health of non-target organisms, including humans The present study was conducted to study the effect of oral exposure of thiram, a dithiocarbamate fungicide, on the intestine of rats. Male rats were administered thiram at doses of 100, 250, 500 and 750 mg/kg body weight for 4 days. This treatment reduced cellular glutathione, total sulfhydryl groups but enhanced protein carbonyl content and hydrogen peroxide levels. In addition, the activities of all major antioxidant enzymes (catalase, thioredoxin reductase, glutathione peroxidase and glutathione-S-transferase) except superoxide dismutase were decreased. The antioxidant power of the intestine was impaired lowering the metal-reducing and free radical quenching ability. Administration of thiram also led to inhibition of intestinal brush border membrane enzymes, alkaline phosphatase, γ-glutamyl transferase, leucine aminopeptidase and sucrase. Activities of enzymes of pentose phosphate pathway, citric acid cycle, glycolysis and gluconeogenesis were also inhibited. Histopathology showed extensive damage in the intestine of thiram-treated rats at higher doses. All the observed effects were in a thiram dose-dependent manner. The results of this study show that thiram causes significant oxidative damage in the rat intestine which is associated with the marked impairment in the antioxidant defense system.


Subject(s)
Sulfhydryl Compounds , Thiram , Administration, Oral , Animals , Antioxidants/metabolism , Intestines , Microvilli , Oxidation-Reduction , Oxidative Stress , Protein Carbonylation , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism
10.
Environ Sci Pollut Res Int ; 28(32): 43711-43724, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33837945

ABSTRACT

Copper (Cu) is an extensively used heavy metal and an indispensible micronutrient for living beings. However, Cu is also toxic and exerts multiple adverse health effects when humans are exposed to high levels of this metal. We have examined the effect of single acute oral dose of copper chloride (CuCl2) on parameters of oxidative stress, cellular metabolism, membrane and DNA damage in rat intestine. Adult male Wistar rats were divided into four groups and separately administered a single oral dose of 5, 15, 30 and 40 mg CuCl2/kg body weight. Rats not administered CuCl2 served as the control. Oral administration of CuCl2 led to significant alterations in the activities of metabolic and membrane-bound enzymes; brush border enzymes were inhibited by 45-75% relative to the control set. Inhibition of antioxidant enzymes diminished the metal-reducing and free radical quenching ability of the cells. Oxidative damage caused cellular oxidation of thiols, proteins and lipids. Diphenylamine and comet assays showed that CuCl2 treatment enhanced DNA damage while DNA-protein crosslinking was also increased in the intestinal cells. Examination of stained sections showed that CuCl2 treatment led to marked histological changes in the intestine. All the changes seen were in a CuCl2 dose-dependent manner with more prominent alterations at higher doses of CuCl2. These results clearly show that oral administration of CuCl2 results in oxidative damage to the intestine which can impair its digestive and absorptive functions.


Subject(s)
Antioxidants , Copper , Animals , Antioxidants/metabolism , Chlorides/metabolism , Copper/metabolism , Copper/toxicity , DNA/metabolism , DNA Damage , Intestines , Male , Microvilli/metabolism , Oxidative Stress , Rats , Rats, Wistar
12.
J Cell Biochem ; 120(5): 7032-7044, 2019 May.
Article in English | MEDLINE | ID: mdl-30368897

ABSTRACT

The widespread use of sodium nitrite (NaNO2 ) for various industrial purposes has increased human exposure to alarmingly high levels of nitrate/nitrite. Because NaNO 2 is a strong oxidizing agent, induction of oxidative stress is one of the mechanisms by which it can exert toxicity in humans and animals. We have investigated the possible protection offered by carnosine (CAR) and N-acetylcysteine (NAC) against NaNO 2 -induced nephrotoxicity in rats. Animals orally received CAR at 100 mg/kg body weight/d for seven days or NAC at 100 mg/kg body weight/d for five days followed by a single oral dose of NaNO 2 at 60 mg/kg body weight. The rats were killed after 24 hours, and the kidneys were removed and processed for various analyses. NaNO 2 induced oxidative stress in kidneys, as shown by the decreased activities of antioxidant defense, brush border membrane, and metabolic enzymes. DNA-protein crosslinking and DNA fragmentation were also observed. CAR/NAC pretreatment significantly protected the kidney against these biochemical alterations. Histological studies supported these findings, showing kidney damage in NaNO 2 -treated animals and reduced tissue impairment in the combination groups. The protection offered by CAR and NAC against NaNO 2 -induced damage, and their nontoxic nature, makes them potential therapeutic agents against nitrite-induced nephrotoxicity.

13.
Environ Toxicol ; 33(11): 1182-1194, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30144278

ABSTRACT

Sodium chlorate (NaClO3 ) is widely used in paper and pulp industries and as a non-selective herbicide. Humans can be exposed to NaClO3 through contaminated drinking water due to its improper and unchecked usage in industries and as herbicide. NaClO3 is also present as a major stable by-product in drinking water that has been disinfected with chlorine dioxide. In this study, we have investigated the effect of a single acute oral dose of NaClO3 on rat kidney. Adult male Wistar rats were divided into one control and four NaClO3 treated groups that were orally given different doses of NaClO3 and euthanized 24 hr after the treatment. Oral administration of NaClO3 resulted in increased hydrogen peroxide levels, lipid, and protein oxidation while thiol and glutathione content and activities of brush border membrane enzymes were decreased in kidney in a NaClO3 dose-dependent manner. Significant alterations in the activities of enzymes involved in carbohydrate metabolism and antioxidant defense were also observed. Administration of NaClO3 induced DNA fragmentation and increased DNA-protein cross-linking. Histological studies showed marked damage in kidney from NaClO3 treated animals. These results strongly suggest that NaClO3 induces nephrotoxicity via redox imbalance that results in DNA and membrane damage, metabolic alterations and brush border membrane enzyme dysfunction.


Subject(s)
Acute Kidney Injury/chemically induced , Chlorates/toxicity , Herbicides/toxicity , Kidney/drug effects , Microvilli/drug effects , Oxidative Stress/drug effects , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Animals , Antioxidants/metabolism , Carbohydrate Metabolism/drug effects , DNA Damage , Glutathione/metabolism , Kidney/enzymology , Kidney/pathology , Kidney/ultrastructure , Male , Microvilli/enzymology , Microvilli/pathology , Oxidation-Reduction/drug effects , Rats , Rats, Wistar , Toxicity Tests, Acute
14.
Environ Sci Pollut Res Int ; 25(20): 19380-19392, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29728968

ABSTRACT

The widespread use of sodium nitrite (NaNO2) as food preservative, rampant use of nitrogenous fertilizers for agricultural practices, and improper disposal of nitrogenous wastes have drastically increased human exposure to high nitrite levels causing various health disorders and death. In the present study, the protective effect of carnosine and N-acetylcysteine (NAC) against NaNO2-induced intestinal toxicity in rats was investigated. Animals were given a single acute oral dose of NaNO2 at 60 mg/kg body weight with or without prior administration of either carnosine at 100 mg/kg body weight/day for 7 days or NAC at 100 mg/kg body weight/day for 5 days. Rats were killed after 24 h, and intestinal preparations were used for the evaluation of biochemical alterations and histological abrasions. Administration of NaNO2 alone decreased the activities of intestinal brush border membrane and metabolic enzymes and significantly weakened the anti-oxidant defense system. DNA damage was also evident as observed by increased DNA-protein crosslinking and fragmentation. However, prior administration of carnosine or NAC significantly ameliorated NaNO2-induced damage in intestinal cells. Histological studies support these biochemical results, showing intestinal damage in NaNO2-treated animals and reduced tissue injury in the combination groups. The intrinsic anti-oxidant properties of carnosine and NAC must have contributed to the observed mitigation of nitrite-induced metabolic alterations and oxidative damage. Based on further validation from clinical trials, carnosine and NAC can potentially be used as chemo-preventive agents against NaNO2 toxicity.


Subject(s)
Acetylcysteine/pharmacology , Carnosine/pharmacology , DNA Damage/drug effects , Oxidative Stress/drug effects , Sodium Nitrite/toxicity , Animals , Antioxidants/pharmacology , Intestines/drug effects , Intestines/pathology , Male , Oxidation-Reduction/drug effects , Rats
15.
Naunyn Schmiedebergs Arch Pharmacol ; 391(2): 145-157, 2018 02.
Article in English | MEDLINE | ID: mdl-29302711

ABSTRACT

We have previously shown that oral administration of Nigella sativa oil (NSO) ameliorates the deleterious gastrointestinal effects of cisplatin (CP), administered as a single dose. Since a typical clinical CP dosing regimen involves multiple cycles of CP administration in lower doses, in the present study we investigate the protective efficacy of NSO and its major bioactive constituent, thymoquinone (TQ), against multiple-dose CP treatment-induced deleterious biochemical and histological changes in rat intestine. Rats were divided into six groups, viz., control, CP, CP+NSO, CP+TQ, NSO, and TQ. Animals in CP+NSO and CP+TQ groups were pre-administered NSO (2 ml/kg bwt, orally) and TQ (1.5 mg/kg bwt, orally), respectively, daily for 14 days and were then treated with five repeated doses of CP (3 mg/kg bwt, i.p.), every fourth day for 20 days while still receiving NSO/TQ. CP treatment alone led to a significant decline in specific activities of brush border membrane (BBM) enzymes while NSO or TQ administration to CP-treated rats significantly prevented the decline in BBM enzyme activities in the isolated brush border membrane vesicles (BBMV) as well as in mucosal homogenates. Furthermore, both NSO and TQ administration markedly ameliorated CP-induced alterations on carbohydrate metabolism enzymes and the enzymatic and non-enzymatic parameters of antioxidant defense system in the intestinal mucosa. However, NSO appeared to be more efficacious than TQ in protecting against CP-induced gastrointestinal dysfunction. Histopathological findings corroborated the biochemical results. Thus, NSO and TQ may prove clinically useful in amelioration of the intestinal toxicity associated with long-term CP chemotherapy.


Subject(s)
Benzoquinones/administration & dosage , Carbohydrate Metabolism/physiology , Cisplatin/toxicity , Intestine, Small/metabolism , Microvilli/metabolism , Nigella sativa , Administration, Oral , Animals , Antioxidants/administration & dosage , Carbohydrate Metabolism/drug effects , Intestine, Small/drug effects , Male , Microvilli/drug effects , Plant Oils/administration & dosage , Rats , Rats, Wistar , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism
16.
J Cell Biochem ; 119(4): 3744-3754, 2018 04.
Article in English | MEDLINE | ID: mdl-29240267

ABSTRACT

Sodium nitrite (NaNO2 ) is widely used as a food additive and preservative in fish and meat products. We have evaluated the effect of a single acute oral dose of NaNO2 on oxidative stress parameters, antioxidant capacity, and DNA in rat kidney. Male Wistar rats were divided into four groups and given single oral dose of NaNO2 at 20, 40, 60, and 75 mg/kg body weight; untreated rats served as the control group. All animals in NaNO2 -treated groups showed marked alterations in various parameters of oxidative stress as compared to the control group. This included increase in lipid peroxidation, protein oxidation, hydrogen peroxide levels, and decrease in reduced glutathione content and antioxidant capacity. Administration of NaNO2 also increased DNA damage as evident from release of free nucleotides and confirmed by comet assay. It also led to greater cross-linking of DNA to proteins. Histological analysis showed marked morphological changes in the kidney of NaNO2 -treated animals. These alterations could be due to increased free radical generation or direct chemical modification by reaction intermediates. Our results suggest that nitrite-induced nephrotoxicity is mediated through redox imbalance and results in DNA damage.


Subject(s)
DNA Damage/drug effects , Kidney/drug effects , Kidney/metabolism , Sodium Nitrite/pharmacology , Animals , DNA Damage/genetics , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Lipid Peroxidation/drug effects , Male , Oxidation-Reduction/drug effects , Rats , Rats, Wistar
17.
Carbohydr Polym ; 179: 317-327, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29111057

ABSTRACT

It is the first report where different amounts of resol resin (RS) were incorporated with chitosan-hydroxyapatite (CHA) to develop a triconstituent nanoensemble CHA-RS(0.5,1,2), via simple co-precipitation method. The results of SEM, TEM, TGA and mechanical analysis revealed irregular interconnected rough morphology with homogenous distribution of needle shaped particles having average size ranging between 12 and 19nm, possessing higher thermal stability and mechanical strength, respectively relative to CHA (binary) nanocomposite. The CHA-1RS nanocomposite showed enhanced protein adsorption and ALP activity with excellent apatite formation ability compared to CHA-RS(0.5,2) and CHA nanocomposites. Thus, CHA-1RS nanocomposite was selectively tested as bare implant in the repair of critical-size calvarium defect (8mm) in albino rat. The histopathological and radiological investigations indicated that CHA-1RS prompted the bone regeneration ability as early as 2 weeks postimplantation demonstrating remarkably faster healing of calvarial defect relative to Cerabone. These findings have placed CHA-1RS on the pedestal to be employed as a potential alternative biomaterial for bone tissue engineering.

18.
Biomed Pharmacother ; 96: 912-923, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29223554

ABSTRACT

Cisplatin (CP) is an effective anti-cancer drug which causes remarkable toxicity to the kidney, particularly to proximal tubules, by generating reactive oxygen species. Nigella sativa (NS), commonly known as "black cumin" reduces the progression of various kidney disorders. Thymoquinone (TQ), the major bioactive constituent of NS seeds, has been credited for various pharmacological effects of NS. Since, a typical clinical CP dosing regimen involves CP administration in multiple cycles over a long time duration, hence the present study aimed to evaluate the renoprotective efficacy of NS oil and TQ against multiple dose CP treatment induced deleterious biochemical and histological alterations in rat kidney. Adult male Wistar rats were divided into six groups viz. control, CP, CPNSO, CPTQ, NSO and TQ. Animals in CPNSO and CPTQ groups were pre-administered NSO (2ml/kg bwt, orally) and TQ (1.5mg/kg bwt, orally) respectively for 14 days and were then treated with CP (3mg/kg bwt, i.p), every fourth day for 20 days while still receiving NSO/TQ. NSO and TQ administration, prior to and along with CP treatment, attenuated CP induced renal functional impairment as evident by significantly restored serum creatinine and blood urea nitrogen levels. CP treatment alone led to significant decline in the specific activities of brush border membrane (BBM) marker enzymes viz. ALP (-46.64%), GGTase (-50.24%) and LAP (-42.15%), while NSO or TQ administration to CP treated rats significantly prevented the decline in the activities of these enzymes in isolated BBM vesicles (BBMVs) as well as in the homogenates of renal cortex and medulla. Furthermore, both NSO and TQ administration also mitigated the CP induced perturbations in renal metabolic and redox status. Histological studies supported these biochemical results showing significant attenuation of CP induced kidney damage in CPNSO and CPTQ cotreated groups. Thus, NSO and TQ have excellent scope for use as functional food or combinatorial nutraceuticals in CP chemotherapy to ameliorate the accompanying nephropathy in long term cancer chemotherapy.


Subject(s)
Antineoplastic Agents/adverse effects , Benzoquinones/pharmacology , Cisplatin/adverse effects , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Nigella sativa/chemistry , Plant Oils/pharmacology , Administration, Oral , Animals , Biomarkers/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney Diseases/metabolism , Male , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Rats , Rats, Wistar
19.
Eur. j. anat ; 21(4): 293-304, oct. 2017. tab, ilus, graf
Article in English | IBECS | ID: ibc-168646

ABSTRACT

Muscular atrophy in diabetes is believed to be due to uncontrolled hyperglycemia and oxidative stress. Vitamin E, a natural antioxidant, is considered important to maintain skeletal muscle structures and functions. The current study is designed to explore the regenerative potential of d-α-tocopherol after crushed injury of skeletal muscle in healthy and diabetic rats. Diabetes was induced through single subcutaneous injection of alloxan at the dose of 100 mg/kg at hip region. Twenty four albino rats were divided into four groups; healthy control, diabetic control, healthy treated and diabetic treated. Treated groups were administered d-α-tocopherol orally and daily at the dose of 200 mg/kg for three weeks. A horizontal skin incision was made on the shaved right mid-thigh region and after splitting of the fascia between gluteus maximus and tensor fascia lata the gluteus maximus was crushed with Kocher's forceps. Skin wound was closed with an absorbable suture. The crushed muscle changes were studied by assessing the histopathological features, histomorphological measurements and biochemical analyses at the end of 3rd week. One way 'ANOVA' followed by Tukeys test and Student t test were used for statistical analysis. Results obtained through various methods indicate that the d-α-tocopherol helps in skeletal muscle regeneration by improving antioxidant status, myoblast proliferation, revascularization, reinnervation and connective tissue remodeling. Hence it is concluded that d-α-tocopherol is a useful therapeutic dietary supplement in the management of skeletal muscle crushed injuries in both healthy and diabetics


No disponible


Subject(s)
Animals , Rats , Regeneration , Muscle, Skeletal/anatomy & histology , Muscle, Skeletal , Diabetes Mellitus/drug therapy , Tocopherols/therapeutic use , Nerve Crush/methods , Models, Animal , Body Weight , Neovascularization, Pathologic/blood , Nerve Crush/veterinary
20.
PLoS One ; 12(4): e0175196, 2017.
Article in English | MEDLINE | ID: mdl-28384248

ABSTRACT

Industrialization and unchecked use of nitrate/nitrite salts for various purposes has increased human exposure to high levels of sodium nitrite (NaNO2) which can act as a pro-oxidant and pro-carcinogen. Oral exposure makes the gastrointestinal tract particularly susceptible to nitrite toxicity. In this work, the effect of administration of a single acute oral dose of NaNO2 on rat intestine was studied. Animals were randomly divided into four groups and given single doses of 20, 40, 60 and 75 mg NaNO2/kg body weight. Untreated animals served as the control group. An NaNO2 dose-dependent decline in the activities of brush border membrane enzymes, increase in lipid peroxidation, protein oxidation, hydrogen peroxide levels and decreased thiol content was observed in all treated groups. The activities of various metabolic and antioxidant defense enzymes were also altered. NaNO2 induced a dose-dependent increase in DNA damage and DNA-protein crosslinking. Histopathological studies showed marked morphological damage in intestinal cells. The intestinal damage might be due to nitrite-induced oxidative stress, direct action of nitrite anion or chemical modification by reaction intermediates.


Subject(s)
DNA Damage , Intestines/drug effects , Sodium Nitrite/administration & dosage , Administration, Oral , Animals , Dose-Response Relationship, Drug , Glutathione/metabolism , Hydrogen Peroxide/metabolism , Intestinal Mucosa/metabolism , Intestines/pathology , Lipid Peroxidation , Male , Oxidation-Reduction , Rats , Rats, Wistar , Sulfhydryl Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...