Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Environ Monit Assess ; 196(8): 693, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963455

ABSTRACT

Clean air is imperative to the survival of all life forms on the planet. However, recent times have witnessed enormous escalation in urban pollution levels. It is therefore, incumbent upon us to decipher measures to deal with it. In perspective, the present study was carried out to assess PM10 and PM2.5 loading, metallic constituents, gaseous pollutants, source contributions, health impact and noise level of nine-locations, grouped as residential, commercial, and industrial in Lucknow city for 2019-21. Mean concentrations during pre-monsoon for PM10, PM2.5, SO2 and NO2 were: 138.2 ± 35.2, 69.1 ± 13.6, 8.5 ± 3.3 and 32.3 ± 7.4 µg/m3, respectively, whereas post-monsoon concentrations were 143.0 ± 33.3, 74.6 ± 14.5, 12.5 ± 2.1, and 35.5 ± 6.3 µg/m3, respectively. Exceedance percentage of pre-monsoon PM10 over National Ambient Air Quality Standards (NAAQS) was 38.2% while that for post-monsoon was 43.0%; whereas corresponding values for PM2.5 were 15.2% and 24.3%. Post-monsoon season showed higher particulate loading owing to wintertime inversion and high humidity conditions. Order of elements associated with PM2.5 is Co < Cd < Cr < Ni < V < Be < Mo < Mn < Ti < Cu < Pb < Se < Sr < Li < B < As < Ba < Mg < Al < Zn < Ca < Fe < K < Na and that with PM10 is Co < Cd < Ni < Cr < V < Ti < Be < Mo < Cu < Pb < Se < Sr < Li < B < As < Mn < Ba < Mg < Al < Fe < Zn < K < Na < Ca. WHO AIRQ + ascertained 1654, 144 and 1100 attributable cases per 0.1 million of population to PM10 exposure in 2019-21. Source apportionment was carried out using USEPA-PMF and resolved 6 sources with highest percent contributions including road dust re-entrainment, biomass burning and vehicular emission. It is observed that residents of Lucknow city regularly face exposure to particulate pollutants and associated constituents making it imperative to develop pollution abetment strategies.


Subject(s)
Air Pollutants , Air Pollution , Cities , Environmental Monitoring , Particulate Matter , India , Air Pollutants/analysis , Particulate Matter/analysis , Air Pollution/statistics & numerical data , Seasons , Spatio-Temporal Analysis , Vehicle Emissions/analysis
2.
Ann Emerg Med ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38888531

ABSTRACT

STUDY OBJECTIVE: The real-world effectiveness and safety of a 0/1-hour accelerated protocol using high-sensitivity cardiac troponin (hs-cTn) to exclude myocardial infarction (MI) compared to routine care in the United States is uncertain. The objective was to compare a 0/1-hour accelerated protocol for evaluation of MI to a 0/3-hour standard care protocol. METHODS: The RACE-IT trial was a stepped-wedge, randomized trial across 9 emergency departments (EDs) that enrolled 32,609 patients evaluated for possible MI from July 2020 through April 2021. Patients undergoing high-sensitivity cardiac troponin I testing with concentrations less than or equal to 99th percentile were included. Patients who had MI excluded by the 0/1-hour protocol could be discharged from the ED. Patients in the standard care protocol had 0- and 3-hour troponin testing and application of a modified HEART score to be eligible for discharge. The primary endpoint was the proportion of patients discharged from the ED without 30-day death or MI. RESULTS: There were 13,505 and 19,104 patients evaluated in the standard care and accelerated protocol groups, respectively, of whom 19,152 (58.7%) were discharged directly from the ED. There was no significant difference in safe discharges between standard care and the accelerated protocol (59.5% vs 57.8%; adjusted odds ratio (aOR)=1.05, 95% confidence interval [CI] 0.95 to 1.16). At 30 days, there were 90 deaths or MIs with 38 (0.4%) in the standard care group and 52 (0.4%) in the accelerated protocol group (aOR=0.84, 95% CI 0.43 to 1.68). CONCLUSION: A 0/1-hour accelerated protocol using high-sensitivity cardiac troponin I did not lead to more safe ED discharges compared with standard care.

4.
PLoS Negl Trop Dis ; 18(1): e0011852, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38175831

ABSTRACT

BACKGROUND: Cross contamination and biosafety are concerns with the microscopic observation drug susceptibility assay. To address these issues, we modified the MODS technique in the current study. METHODOLOGY/PRINCIPAL FINDINGS: Two hundred and seventy-five samples were processed on LJ media and drug susceptibility was performed by the Indirect agar proportion method. A modified MODS test was done in tissue culture bottles. GenoType MTBDRplus assay was performed to detect the resistance and mutational pattern associated with the resistances. Sensitivity, specificity, positive predictive value, and negative predictive value for the detection of tuberculosis by modified MODS were 97.44%, 80.00%, 97.44%, and 80.00% respectively. The perfect agreement was seen between modified MODS and the Indirect agar proportion method for drug susceptibility testing of isoniazid (kappa = 0.923) and rifampicin (kappa = 1). The contamination rate, cost and TAT for modified MODS were less as compared to the solid media. In the case of MDR-TB isolates S531L (66.66%) was the most prevalent mutation in the rpoB gene followed by S315T2 mutation (58.33%) and T8C (41.66%) in katG and inhA gene respectively. In hetero-resistant strains, C-15T mutation (37.50%) was the most common followed by A-16G (12.50%) in the inhA gene. In INH mono-resistant strains only two mutations were observed i.e., S-315T1(50%) and C-15T (50%) in the katG and inhA genes respectively. CONCLUSIONS/SIGNIFICANCE: Modified MODS proved to be cost-effective and user-friendly, with minimal risk to the handler and no cross-contamination between samples were observed. Hence, it can be used in low-income countries for early detection of tuberculosis and its resistance.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Humans , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests , Agar/pharmacology , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/genetics , Mutation , Genotype
5.
Microsc Res Tech ; 87(1): 42-52, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37660303

ABSTRACT

The development of antibiotic resistant microbial pathogens has become a global health threat and a major concern in modern medicine. The problem of antimicrobial resistance (AMR) has majorly arisen due to sub-judicious use of antibiotics in health care and livestock industry. A slow progress has been made in last two decades in discovery of new antibiotics. A new strategy in combatting AMR is to modulate or disarm the microbes for their virulence and pathogenicity. Plants are considered as promising source for new drugs against AMR pathogens. In this study, fraction-based screening of the Cinnamomum zeylanicum extract was performed followed by detailed investigation of antiquorum sensing and antibiofilm activities of the most active fraction that is, C. zeylanicum hexane fraction (CZHF). More than 75% reduction in violacein pigment of C. violaceum 12472 was overserved. CZHF successfully modulated the virulence of Pseudomonas aeruginosa PAO1 by 60.46%-78.35%. A similar effect was recorded against Serratia marcescens MTCC 97. A broad-spectrum inhibition of biofilm development was found in presence of sub-MICs of CZHF. The colonization of bacteria onto the glass coverslips was remarkably reduced apart from the reduction in exopolymeric substances. Alkaloids and terpenoids were found in CZHF. GC/MS analysis revealed the presence of cinnamaldehyde dimethyl acetal, 2-propenal, coumarin, and α-copaene as major phytocompounds. This study provides enough evidence to support potency of C. zeylanicum extract in targeting the virulence of Gram -ve pathogenic bacteria. The plant extract or active compounds can be developed as successful drugs after careful in vivo examination to target microbial infections. RESEARCH HIGHLIGHTS: Hexane fraction of Cinnamomum zeylanicum is active against QS and biofilms. The broad-spectrum antibiofilm activity was further confirmed by microscopic analysis. Dimethyl acetal, 2-propenal, coumarin, α-copaene, and so forth are major phytocompounds.


Subject(s)
Cinnamomum zeylanicum , Quorum Sensing , Hexanes/pharmacology , Acrolein/pharmacology , Biofilms , Anti-Bacterial Agents/pharmacology , Plant Extracts/pharmacology , Bacteria , Coumarins/pharmacology
6.
Arch Microbiol ; 205(12): 383, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973630

ABSTRACT

Uropathogens have adaptation strategies to survive in the host urinary tract by efficiently utilizing and tolerating the urinary metabolites. Many uropathogens harbour the enzyme urease for the breakdown of urea and the enzymatic breakdown of urea increases the pH and facilitate the struvite crystallization. In this study, the differential urease activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa strains was investigated under different nutritional conditions. The experiments included measurement of growth, pH, urease activity, NH4-N generation and urease gene (ureC) expression among the bacterial strains under different conditions. Further, the implications of urea breakdown on the struvite crystallization in vitro and biofilm formation were also assessed. The study included urease positive isolates and for comparison urease negative isolates were included. Compared to the urease negative strains the urease positive strains formed higher biofilms and motility. The urease positive P. aeruginosa showed significantly higher (p < 0.01) pH and urease activity (A557-A630) compared to E. coli under experimental conditions. Further, supplementation of glucose to the growth media significantly increased the urease activity in P. aeruginosa and in contrast, it was significantly lower in E. coli. The expression profile of urease gene (ureC) was significantly higher (p < 0.001) in P. aeruginosa compared to E. coli and was consistent with the biochemical results of the urease activity under the nutritional conditions. The differential urease activity under two nutritional conditions influenced the biogenic struvite crystallization. It correlated with the urease activity showing higher crystallization rate in P. aeruginosa compared to E. coli. The results highlight the differential urease activity in two common uropathogens under different nutritional conditions that may have significant role on the regulation of virulence, pathogenicity and in the kidney stone disease.


Subject(s)
Pseudomonas aeruginosa , Uropathogenic Escherichia coli , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Urease/genetics , Urease/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Struvite , Urea
8.
J Biomol Struct Dyn ; : 1-19, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37904338

ABSTRACT

Antimicrobial resistance poses a significant challenge to public health, especially in developing countries, due to a substantial rise in bacterial resistance. This situation has become so concerning that we are now at risk of losing the effectiveness of antibiotics altogether. Recent research has firmly established that bacteria engage in a process called quorum sensing (QS). QS regulates various functions, including nutrient scavenging, immune response suppression, increased virulence, biofilm formation and mobility. Pseudomonas aeruginosa, an opportunistic bacterial pathogen, plays a significant role in various medical conditions such as chronic wounds, corneal infections, burn wounds and cystic fibrosis. While antibiotics are effective in killing bacteria, only a few antibiotics, particularly those from the ß-lactam group, have been studied for their impact on the quorum sensing of P. aeruginosa. Given the lack of concentrated efforts in this area, we have investigated the role of ß-lactam antibiotics on various potential targets of P. aeruginosa. Based on their toxicological profiles and the average binding energy obtained through molecular docking, azlocillin and moxalactam have emerged as lead antibiotics. The binding energy for the docking of azlocillin and moxalactam with LasA was determined to be -8.2 and -8.6 kcal/mol, respectively. Molecular simulation analysis has confirmed the stable interaction of both these ligands with all three target proteins (LasI, LasA and PqsR) under physiological conditions. The results of this research underscore the effectiveness of azlocillin and moxalactam. These two antibiotics may be repurposed to target the quorum sensing of P. aeruginosa.Communicated by Ramaswamy H. Sarma.

9.
BMC Complement Med Ther ; 23(1): 305, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37658354

ABSTRACT

We reported a gastric anti-ulcerogenic effect of the Nigella sativa (L.)-derived herbal melanin (HM) using rat models. However, the molecular mechanisms underlying this HM gastroprotective effect remain unknown. Cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E2 (PGE2) and toll-like receptor 4 (TLR4)-mediated interleukin-6 (IL-6) production and secretion play major roles in gastric mucosal protection. In the current study, the human gastric carcinoma epithelial cell line AGS was used as a model to investigate the effect of HM on TLR4, COX-2, glycoprotein mucin 4 protein and gene expression using immuno-cyto-fluorescence staining, Western blot technology, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gastroprotective markers PGE2 and IL-6 production and secretion were also assessed using an enzyme-linked immunosorbent assay (ELISA). Bacterial lipopolysaccharides (LPS), well-known inducers of TLR4, COX-2, PGE2 and IL-6 expression, were used as a positive control. We showed that HM upregulated its main receptor TLR4 gene and protein expression in AGS cells. HM increased, in a dose- and time-dependent manner, the secretion of PGE2 and the expression of COX-2 mRNA and protein, which was detected in the nucleus, cytoplasm and predominantly at the intercellular junctions of the AGS cells. In addition, HM enhanced IL-6 production and secretion, and upregulated the mucin 4 gene expression, the hallmarks of gastroprotection. To check whether HM-induced PGE2 and IL-6 through TLR4 signaling and COX-2 generated, AGS cells were pre-treated with a TLR4 signaling inhibitor TAK242 and the COX-2 inhibitor NS-398. A loss of the stimulatory effects of HM on COX-2, PGE2 and IL-6 production and secretion was observed in TAK242 and NS-398-pre-treated AGS cells, confirming the role of TLR4 signaling and COX-2 generated in the HM gastroprotective effects. In conclusion, our results showed that HM enhances TLR4/COX-2-mediated secretion of gastroprotective markers PGE2 and IL-6, and upregulates mucin 4 gene expression in the human gastric epithelial cell line AGS, which may contribute to the promising beneficial gastroprotective effect of HM for human gastric prevention and treatment.


Subject(s)
Stomach Neoplasms , Humans , Animals , Rats , Melanins , Cyclooxygenase 2 , Dinoprostone , Toll-Like Receptor 4 , Interleukin-6 , Mucin-4
10.
Curr Issues Mol Biol ; 45(7): 5317-5346, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37504254

ABSTRACT

Subclinical mastitis (SCM) is a predominant form of mastitis wherein major visible signs of disease are absent. The present study aimed to determine acute phase proteins (APPs) like ferritin, C-reactive protein (CRP), and microalbumin (Malb) in 135 composite milk and serum samples of healthy (n = 25) and SCM (n = 110) cows. As bovine mastitis is an inflammatory disease, the present study also aimed at finding novel anti-inflammatory compounds from natural sources by repurposing approach using computational studies. The findings of the present study revealed substantial elevation (p < 0.001) in milk SCC and an increase in ferritin, CRP, and Malb (p < 0.001) in milk and sera of the SCM group as compared to healthy animals. Receiver operating characteristics of milk SCC, milk, and serum APPs unraveled statistically substantial alteration (p < 0.001). Further, SCC was correlated with milk APPs ferritin (r = 0.26 **, p < 0.002), CRP (r = 0.19 *, p < 0.02), and Malb (r = 0.21 *, p < 0.01). Additionally, milk SCC was correlated with serum ferritin (r = 0.28 **, p < 0.001), CRP (r = 0.16, p > 0.05), and Malb (r = 0.16, p > 0.05). The findings of molecular docking revealed that Chaetoglobosin U was the most effective molecule that showed the highest binding affinity (kcal/mol) of -10.1 and -8.5 against ferritin and albumin. The present study concluded that the estimation of cow-side tests, SCC, and APPs in milk/serum is suitable to detect SCM and screening herd community. Furthermore, Chaetoglobosin U could be developed as a promising anti-inflammatory inhibitor; however, further studies are required to validate these findings.

11.
FEMS Microbiol Ecol ; 99(9)2023 08 22.
Article in English | MEDLINE | ID: mdl-37496200

ABSTRACT

Social cheating is the exploitation of public goods that are costly metabolites, like exoproteases. Exoprotease exploitation in Pseudomonas aeruginosa has been studied in reference strains. Experimental evolution with reference strains during continuous growth in casein has demonstrated that nonexoprotease producers that are lasR mutants are selected while they behave as social cheaters. However, noncanonical quorum-sensing systems exist in P. aeruginosa strains, which are diverse. In this work, the exploitation of exoproteases in the environmental strain ID4365 was evaluated; ID4365 has a nonsense mutation that precludes expression of LasR. ID4365 produces exoproteases under the control of RhlR, and harbors an inducible prophage. As expected, rhlR mutants of ID4365 behave as social cheaters, and exoprotease-deficient individuals accumulate upon continuous growth in casein. Moreover, in all continuous cultures, population collapses occur. However, this also sometimes happens before cheaters dominate. Interestingly, during growth in casein, ID4565's native prophage is induced, suggesting that the metabolic costs imposed by social cheating may increase its induction, promoting population collapses. Accordingly, lysogenization of the PAO1 lasR mutant with this prophage accelerated its collapse. These findings highlight the influence of temperate phages in social cheating.


Subject(s)
Pseudomonas aeruginosa , Quorum Sensing , Humans , Quorum Sensing/genetics , Pseudomonas aeruginosa/genetics , Caseins/genetics , Caseins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lysogeny , Prophages/genetics
12.
J Biomol Struct Dyn ; : 1-14, 2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37394824

ABSTRACT

In last two decades, the world has seen an exponential increase in the antimicrobial resistance (AMR), making the issue a serious threat to human health. The mortality caused by AMR is one of the leading causes of human death worldwide. Till the end of the twentieth century, a tremendous success in the discovery of new antibiotics was seen, but in last two decades, there is negligible progress in this direction. The increase in AMR combined with slow progress of antibiotic drug discovery has created an urgent demand to search for newer methods of intervention to combat infectious diseases. One of such approach is to look for biofilm and quorum sensing (QS) inhibitors. Plants are excellent source of wide class compounds that can be harnessed to look for the compounds with such properties. This study proves a broad-spectrum biofilm and QS inhibitory potential of umbelliferone. More than 85% reduction in violacein production Chromobacterium violaceum 12472 was found. All tested virulent traits of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 were remarkably inhibited that ranged from 56.62% to 86.24%. Umbelliferone also successfully prevented the biofilm of test bacteria at least by 67.68%. Umbelliferone interacted at the active site of many proteins of QS circuit, which led to the mitigation of virulent traits. The stable nature of complexes of umbelliferone with proteins further strengthens in vitro results. After examining the toxicological profile and other drug-like properties, umbelliferone could be potentially developed as new drug to target the infections caused by Gram - ve bacteria.Communicated by Ramaswamy H. Sarma.

13.
J Expo Sci Environ Epidemiol ; 33(4): 631-636, 2023 07.
Article in English | MEDLINE | ID: mdl-37138035

ABSTRACT

BACKGROUND: Ambient temperatures exceeding 40 °C are projected to become common in many temperate climatic zones due to global warming. Therefore, understanding the health effects of continuous exposure to high ambient temperatures on populations living in hot climatic regions can help identify the limits of human tolerance. OBJECTIVE: We studied the relationship between ambient temperature and non-accidental mortality in the hot desert city of Mecca, Saudi Arabia, between 2006 and 2015. METHODS: We used a distributed lag nonlinear model to estimate the mortality-temperature association over 25 days of lag. We determined the minimum mortality temperature (MMT) and the deaths that are attributable to heat and cold. RESULTS: We analyzed 37,178 non-accidental deaths reported in the ten-year study period among Mecca residents. The median average daily temperature was 32 °C (19-42 °C) during the same study period. We observed a U-shaped relationship between daily temperature and mortality with an MMT of 31.8 °C. The total temperature-attributable mortality of Mecca residents was 6.9% (-3.2; 14.8) without reaching statistical significance. However, extreme heat, higher than 38 °C, was significantly associated with increased risk of mortality. The lag structure effect of the temperature showed an immediate impact, followed by a decline in mortality over many days of heat. No effect of cold on mortality was observed. IMPACT STATEMENT: High ambient temperatures are projected to become future norms in temperate climates. Studying populations familiar with desert climates for generations with access to air-conditioning would inform on the mitigation measures to protect other populations from heat and on the limits of human tolerance to extreme temperatures. We studied the relationship between ambient temperature and all-cause mortality in the hot desert city of Mecca. We found that Mecca population is adapted to high temperatures, although there was a limit to tolerance to extreme heat. This implies that mitigation measures should be directed to accelerate individual adaptation to heat and societal reorganization.


Subject(s)
Extreme Heat , Humans , Extreme Heat/adverse effects , Risk Factors , Desert Climate , Temperature , Hot Temperature , Cold Temperature , Mortality
14.
J Mol Model ; 29(6): 171, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37155030

ABSTRACT

CONTEXT: NLRP9 is a member of nucleotide-binding domain leucine-rich repeat-containing receptors and is found to be associated with many inflammatory diseases. In the current scenario, the identification of promising anti-inflammatory compounds from natural sources by repurposing approach is still relevant for the early prevention and effective management of the disease. METHODS: In the present study, we docked bioactives of Ashwagandha (Withanoside IV, Withanoside V, Withanolide A, Withanolide B, and Sitoindoside IX) and two control drugs against bovine NLRP9 protein. ADME/T analysis was used to determine the physiochemical properties of compounds and standard drugs. Molecular modeling was used to evaluate the correctness and quality of protein structures. In silico docking analysis revealed Withanolide B had the highest binding affinity score of -10.5 kcal/mol, whereas, among control drugs, doxycycline hydrochloride was most effective (-10.3 kcal/mol). The results of this study revealed that bioactives of Withania somnifera could be promising inhibitors against bovine NLRP9. In the present study, molecular simulation was used to measure protein conformational changes over time. The Rg value was found to be 34.77A°. RMSD and B-factor were also estimated to provide insights into the flexibility and mobile regions of protein structure. A functional protein network interaction was constructed from information collected from non-curative sources as protein-protein interactions (PPI) that play an important role in determining the function of the target protein and the ability of the drug molecule. Thus, in the present situation, it is important to identify bioactives with the potential to combat inflammatory diseases and provide strength and immunity to the host. However, there is still a need to study in vitro and in vivo to further support these findings.


Subject(s)
Withania , Animals , Cattle , Molecular Docking Simulation , Withania/chemistry , Withania/metabolism , Computer Simulation
15.
Environ Health Perspect ; 131(4): 47004, 2023 04.
Article in English | MEDLINE | ID: mdl-37018010

ABSTRACT

BACKGROUND: Although the association between ambient temperature and mortality in local populations is evident, this relationship remains unclear in transient populations (e.g., due to immigration, mass gatherings, or displacement). The holy city of Mecca annually shelters two populations comprising its residents and the transitory Hajj pilgrims (>2 million people from >180 countries). Both live side by side in a hot desert climate, rendering the development of evidence-based heat-protective measures challenging. OBJECTIVES: We aimed to characterize the ambient temperature-mortality relationship and burden for the Mecca resident and Hajj transient populations, which have distinct levels of adaptation to ambient temperature. METHODS: We analyzed daily air temperature and mortality data for Mecca residents and pilgrims over nine Hajj seasons between 2006 and 2014, using a fitted standard time-series Poisson model. We characterized the temperature-mortality relationship with a distributed lag nonlinear model with 10 d of lag. We determined the minimum mortality temperature (MMT) and attributable deaths for heat and cold for the two populations. RESULTS: The median average daily temperature during the Hajj seasons was 30°C (19°C-37°C). There were 8,543 and 10,457 nonaccidental deaths reported during the study period among Mecca residents and pilgrims, respectively. The MMT was 2.5°C lower for pilgrims in comparison with the MMT for Mecca residents (23.5°C vs. 26.0°C). The temperature-mortality relationship shape varied from inverted J to U shape for the Mecca and pilgrim populations, respectively. Neither hot nor cold temperatures had a statistically significant association with mortality in Mecca residents. In contrast, for pilgrims, elevated temperatures were associated with significantly high attributable mortality of 70.8% [95% confidence interval (CI): 62.8, 76.0]. The effect of heat on pilgrims was immediate and sustained. DISCUSSION: Our findings indicate that pilgrims and Mecca residents exposed to the same hot environmental conditions exhibited distinct health outcomes. This conclusion suggests that a precision public health approach may be warranted to protect against high environmental temperature during mass gatherings of diverse populations. https://doi.org/10.1289/EHP9838.


Subject(s)
Cold Temperature , Desert Climate , Humans , Temperature , Hot Temperature , Seasons , Mortality
16.
J Physiol ; 601(12): 2407-2423, 2023 06.
Article in English | MEDLINE | ID: mdl-36951421

ABSTRACT

An evolutionary heat shock response (HSR) protects most living species, including humans, from heat-induced macromolecular damage. However, its role in the pathogenesis of heat stroke is unknown. We examined the whole genome transcriptome in peripheral blood mononuclear cells of a cohort of subjects exposed to the same high environmental heat conditions, who developed heat stroke (n = 19) versus those who did not (n = 19). Patients with heat stroke had a mean rectal temperature at admission of 41.7 ± 0.8°C, and eight were in deep coma (Glasgow Coma Score = 3). The transcriptome showed that genes involved in more than half of the entire chaperome were differentially expressed relative to heat stress control. These include the heat shock protein, cochaperone, and chaperonin genes, indicating a robust HSR. Differentially expressed genes also encoded proteins related to unfolded protein response, DNA repair, energy metabolism, oxidative stress, and immunity. The analysis predicted perturbations of the proteome network and energy production. Cooling therapy attenuated these alterations without complete restoration of homeostasis. We validated the significantly expressed genes by a real-time polymerase chain reaction. The findings reveal the molecular signature of heat stroke. They also suggested that a powerful HSR may not be sufficient to protect against heat injury. The overwhelming proteotoxicity and energy failure could play a pathogenic role. KEY POINTS: Most living species, including humans, have inherent heat stress response (HSR) that shields them against heat-induced macromolecular damage. The role of the HSR in subjects exposed to environmental heat who progressed to heat stroke versus those that did not is unknown. Our findings suggest that heat stroke induces a broad and robust HSR of nearly half of the total heat shock proteins, cochaperones, and chaperonin genes. Heat stroke patients exhibited inhibition of genes involved in energy production, including oxidative phosphorylation and ATP production. Significant enrichment of neurodegenerative pathways, including amyloid processing signalling, the Huntington's and Parkinson's disease signalling suggestive of brain proteotoxicity was noted. The data suggests that more than a powerful HSR may be required to protect against heat stroke. Overwhelming proteotoxicity and energy failure might contribute to its pathogenesis.


Subject(s)
Heat Stroke , Transcriptome , Humans , Coma , Leukocytes, Mononuclear , Heat-Shock Response/genetics , Heat-Shock Proteins/genetics , Heat Stroke/genetics
17.
J Endocr Soc ; 8(1): bvad159, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38162016

ABSTRACT

Context: Bariatric surgery has been shown to be effective in inducing complete remission of type 2 diabetes in adults with obesity. However, its efficacy in achieving complete diabetes remission remains variable and difficult to predict before surgery. Objective: We aimed to characterize bariatric surgery-induced transcriptome changes associated with diabetes remission and the predictive role of the baseline transcriptome. Methods: We performed a whole-genome microarray in peripheral mononuclear cells at baseline (before surgery) and 2 and 12 months after bariatric surgery in a prospective cohort of 26 adults with obesity and type 2 diabetes. We applied machine learning to the baseline transcriptome to identify genes that predict metabolic outcomes. We validated the microarray expression profile using a real-time polymerase chain reaction. Results: Sixteen patients entered diabetes remission at 12 months and 10 did not. The gene-expression analysis showed similarities and differences between responders and nonresponders. The difference included the expression of critical genes (SKT4, SIRT1, and TNF superfamily), metabolic and signaling pathways (Hippo, Sirtuin, ARE-mediated messenger RNA degradation, MSP-RON, and Huntington), and predicted biological functions (ß-cell growth and proliferation, insulin and glucose metabolism, energy balance, inflammation, and neurodegeneration). Modeling the baseline transcriptome identified 10 genes that could hypothetically predict the metabolic outcome before bariatric surgery. Conclusion: The changes in the transcriptome after bariatric surgery distinguish patients in whom diabetes enters complete remission from those who do not. The baseline transcriptome can contribute to the prediction of bariatric surgery-induced diabetes remission preoperatively.

18.
Front Cell Infect Microbiol ; 13: 1280265, 2023.
Article in English | MEDLINE | ID: mdl-38298921

ABSTRACT

Background: Bacteriophage therapy is becoming part of mainstream Western medicine since antibiotics of clinical use tend to fail. It involves applying lytic bacteriophages that self-replicate and induce cell lysis, thus killing their hosts. Nevertheless, bacterial killing promotes the selection of resistant clones which sometimes may exhibit a decrease in bacterial virulence or antibiotic resistance. Methods: In this work, we studied the Pseudomonas aeruginosa lytic phage φDCL-PA6 and its variant φDCL-PA6α. Additionally, we characterized and evaluated the production of virulence factors and the virulence in a Galleria mellonella model of resistant mutants against each phage for PA14 and two clinical strains. Results: Phage φDCL-PA6α differs from the original by only two amino acids: one in the baseplate wedge subunit and another in the tail fiber protein. According to genomic data and cross-resistance experiments, these changes may promote the change of the phage receptor from the O-antigen to the core lipopolysaccharide. Interestingly, the host range of the two phages differs as determined against the Pseudomonas aeruginosa reference strains PA14 and PAO1 and against nine multidrug-resistant isolates from ventilator associated pneumonia. Conclusions: We show as well that phage resistance impacts virulence factor production. Specifically, phage resistance led to decreased biofilm formation, swarming, and type III secretion; therefore, the virulence towards Galleria mellonella was dramatically attenuated. Furthermore, antibiotic resistance decreased for one clinical strain. Our study highlights important potential advantages of phage therapy's evolutionary impact that may be exploited to generate robust therapy schemes.


Subject(s)
Bacteriophages , Moths , Phage Therapy , Pseudomonas Phages , Animals , Virulence , Pseudomonas aeruginosa , Pseudomonas Phages/genetics , Virulence Factors/genetics , Drug Resistance, Microbial , Anti-Bacterial Agents/pharmacology
19.
Front Cell Infect Microbiol ; 13: 1322778, 2023.
Article in English | MEDLINE | ID: mdl-38332949

ABSTRACT

The advent of nanotechnology has been instrumental in the development of new drugs with novel targets. Recently, metallic nanoparticles have emerged as potential candidates to combat the threat of drug-resistant infections. Diabetic foot ulcers (DFUs) are one of the dreadful complications of diabetes mellitus due to the colonization of numerous drug-resistant pathogenic microbes leading to biofilm formation. Biofilms are difficult to treat due to limited penetration and non-specificity of drugs. Therefore, in the current investigation, SnO2 nanoparticles were biosynthesized using Artemisia vulgaris (AvTO-NPs) as a stabilizing agent and were characterized using ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the efficacy of AvTO-NPs against biofilms and virulence factors of drug-resistant Candida albicans strains isolated from DFUs was assessed. AvTO-NPs displayed minimum inhibitory concentrations (MICs) ranging from 1 mg/mL to 2 mg/mL against four strains of C. albicans. AvTO-NPs significantly inhibited biofilm formation by 54.8%-87%, germ tube formation by 72%-90%, cell surface hydrophobicity by 68.2%-82.8%, and exopolysaccharide (EPS) production by 69%-86.3% in the test strains at respective 1/2xMIC. Biosynthesized NPs were effective in disrupting established mature biofilms of test strains significantly. Elevated levels of reactive oxygen species (ROS) generation in the AvTO-NPs-treated C. albicans could be the possible cause of cell death leading to biofilm inhibition. The useful insights of the present study could be exploited in the current line of treatment to mitigate the threat of biofilm-related persistent DFUs and expedite wound healing.


Subject(s)
Artemisia , Diabetes Mellitus , Diabetic Foot , Metal Nanoparticles , Candida albicans , Virulence Factors/pharmacology , Tin/pharmacology , Azoles/pharmacology , Oxides/pharmacology , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Biofilms , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemistry
20.
Molecules ; 27(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36431957

ABSTRACT

Aztreonam is a Gram-negative bacteria-targeting synthetic monobactam antibiotic. Human serum albumin (HSA) plays an important role in the transference of pharmaceuticals, hormones, and fatty acids, along with other compounds, determining their biodistribution and physiological fate. Using several biophysical and in silico approaches, we studied the interaction of aztreonam with HSA under physiological environments in this study. Results confirm the formation of HSA-aztreonam complex where aztreonam showed moderate affinity towards HSA. A static mode of quenching was confirmed from the steady state fluorescence data. FRET findings also showed that there was a significant feasibility of energy transfer between HSA and aztreonam. Site marker displacement experimental conclusion suggested the binding site of aztreonam was the sub-domain IB of HSA. Circular dichroic spectroscopic analysis suggested that aztreonam interaction decreases the α-helical content of HSA. Changes in microenvironment were studied through synchronous fluorescence data. According to molecular docking results, the HSA-aztreonam complex is mostly maintained by non-covalent forces, with a binding energy of 7.7 kcal mol-1. The presence of a hydrogen bond, van der Waal interaction, and pi-anion interaction in the binding process, as well as conformational changes in HSA after binding with aztreonam, are all confirmed by molecular dynamic simulation.


Subject(s)
Aztreonam , Serum Albumin, Human , Humans , Serum Albumin, Human/chemistry , Aztreonam/pharmacology , Molecular Docking Simulation , Protein Binding , Tissue Distribution , Thermodynamics , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...