Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37903405

ABSTRACT

The rational design and preparation of conductive metal-organic frameworks (MOFs) are alluring and challenging pathways to develop active catalysts toward electrocatalytic glucose oxidation. The hybridization of conductive MOFs with carbon nanotubes (CNTs) in the form of a composite can greatly improve the electrocatalytic performance. Herein, a facile one-step synthetic strategy is utilized to fabricate a Ni3(HHTP)2/CNT (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) composite for nonenzymatic detection of glucose in an alkaline solution. The Ni3(HHTP)2/CNT composite, as an electrochemical glucose sensor material, exhibits superior electrocatalytic activity toward glucose oxidation with a wide detection range of up to 3.9 mM, a low detection limit of 4.1 µM (signal/noise = 3), a fast amperometric response time of <2 s, and a high sensitivity of 4774 µA mM-1 cm-2, surpassing the performance of some recently reported nonenzymatic transition-metal-based glucose sensors. In addition, the composite sensor also shows outstanding selectivity, robust long-term electrochemical stability, favorable anti-interference properties, and good reproducibility. This work displays the effectiveness of enhancing the electrocatalytic performance toward glucose detection by combing conductive MOFs with CNTs, thereby opening up an applicable and encouraging approach for the design of advanced nonenzymatic glucose sensors.

2.
Angew Chem Int Ed Engl ; 62(44): e202310878, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37647152

ABSTRACT

The catalytic activity of multifunctional, microporous materials is directly linked to the spatial arrangement of their structural building blocks. Despite great achievements in the design and incorporation of isolated catalytically active metal complexes within such materials, a detailed understanding of their atomic-level structure and the local environment of the active species remains a fundamental challenge, especially when these latter are hosted in non-crystalline organic polymers. Here, we show that by combining computational chemistry with pair distribution function analysis, 129 Xe NMR, and Dynamic Nuclear Polarization enhanced NMR spectroscopy, a very accurate description of the molecular structure and confining surroundings of a catalytically active Rh-based organometallic complex incorporated inside the cavity of amorphous bipyridine-based porous polymers is obtained. Small, but significant, differences in the structural properties of the polymers are highlighted depending on their backbone motifs.

3.
Angew Chem Int Ed Engl ; 61(49): e202209762, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36161682

ABSTRACT

Vinylene-linked two-dimensional covalent organic frameworks (V-2D-COFs) have shown great promise in electronics and optoelectronics. However, only a few reactions for V-2D-COFs have been developed hitherto. Besides the kinetically low reversibility of C=C bond formation, another underlying issue facing the synthesis of V-2D-COFs is the attainment of high (E)-alkene selectivity to ensure the appropriate symmetry of 2D frameworks. Here, we tailor the E/Z selectivity of the Wittig reaction by employing a proper catalyst (i.e., Cs2 CO3 ) to obtain more stable intermediates and elevating the temperature across the reaction barrier. Subsequently, the Wittig reaction is innovatively utilized for the synthesis of four crystalline V-2D-COFs by combining aldehydes and ylides. Importantly, the efficient conjugation and decent crystallinity of the resultant V-2D-COFs are demonstrated by their high charge carrier mobilities over 10 cm2  V-1 s-1 , as revealed by non-contact terahertz (THz) spectroscopy.

4.
Chem Commun (Camb) ; 58(28): 4492-4495, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35302127

ABSTRACT

Alcohol adsorption by metal-organic frameworks (ZIF-8 and ZIF-11) in aqueous solutions is investigated including alcohol mixtures. Solid-state 13C NMR spectroscopy is demonstrated to be well-suited for such liquid-phase adsorption studies at the molecular level. Adsorption-induced immobilization could be visualized. Finally, an unexpected phase transition of ZIF-11 was discovered.

5.
Magn Reson (Gott) ; 2(2): 751-763, 2021.
Article in English | MEDLINE | ID: mdl-37905215

ABSTRACT

Among hyperpolarization techniques, quantum-rotor-induced polarization (QRIP), also known as the Haupt effect, is a peculiar one. It is, on the one hand, rather simple to apply by cooling and heating a sample. On the other hand, only the methyl groups of a few substances seem to allow for the effect, which strongly limits the applicability of QRIP. While it is known that a high tunnel frequency is required, the structural conditions for the effect to occur have not been exhaustively studied yet. Here we report on our efforts to heuristically recognize structural motifs in molecular crystals able to allow to produce QRIP.

SELECTION OF CITATIONS
SEARCH DETAIL
...