Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Signal Process Control ; 85: 104855, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36987448

ABSTRACT

Chest X-rays (CXR) are the most commonly used imaging methodology in radiology to diagnose pulmonary diseases with close to 2 billion CXRs taken every year. The recent upsurge of COVID-19 and its variants accompanied by pneumonia and tuberculosis can be fatal in some cases and lives could be saved through early detection and appropriate intervention for the advanced cases. Thus CXRs can be used for an automated severity grading of pulmonary diseases that can aid radiologists in making better and informed diagnoses. In this article, we propose a single framework for disease classification and severity scoring produced by segmenting the lungs into six regions. We present a modified progressive learning technique in which the amount of augmentations at each step is capped. Our base network in the framework is first trained using modified progressive learning and can then be tweaked for new data sets. Furthermore, the segmentation task makes use of an attention map generated within and by the network itself. This attention mechanism allows to achieve segmentation results that are on par with networks having an order of magnitude or more parameters. We also propose severity score grading for 4 thoracic diseases that can provide a single-digit score corresponding to the spread of opacity in different lung segments with the help of radiologists. The proposed framework is evaluated using the BRAX data set for segmentation and classification into six classes with severity grading for a subset of the classes. On the BRAX validation data set, we achieve F1 scores of 0.924 and 0.939 without and with fine-tuning, respectively. A mean matching score of 80.8% is obtained for severity score grading while an average area under receiver operating characteristic curve of 0.88 is achieved for classification.

2.
Sensors (Basel) ; 22(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35214568

ABSTRACT

Human beings tend to incrementally learn from the rapidly changing environment without comprising or forgetting the already learned representations. Although deep learning also has the potential to mimic such human behaviors to some extent, it suffers from catastrophic forgetting due to which its performance on already learned tasks drastically decreases while learning about newer knowledge. Many researchers have proposed promising solutions to eliminate such catastrophic forgetting during the knowledge distillation process. However, to our best knowledge, there is no literature available to date that exploits the complex relationships between these solutions and utilizes them for the effective learning that spans over multiple datasets and even multiple domains. In this paper, we propose a continual learning objective that encompasses mutual distillation loss to understand such complex relationships and allows deep learning models to effectively retain the prior knowledge while adapting to the new classes, new datasets, and even new applications. The proposed objective was rigorously tested on nine publicly available, multi-vendor, and multimodal datasets that span over three applications, and it achieved the top-1 accuracy of 0.9863% and an F1-score of 0.9930.


Subject(s)
Neural Networks, Computer , Humans
3.
Data Brief ; 33: 106543, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304953

ABSTRACT

In this paper, we present the data set of surface electromyography (sEMG) and an Inertial Measurement Unit (IMU) against human muscle activity during routine activities. The Myo Thalamic Armband is used to acquire the signals from muscles below the elbow. The dataset comprises of raw sEMG, accelerometer, gyro and derived orientation signals for four different activities. The four activities, which are selected for this dataset acquisition, are resting, typing, push up exercise and lifting a heavy object. Therefore, there are five associated files against each activity. The IMU data can be fused with the sEMG data for better classification of activities especially to separate aggressive and normal activities. The data is valuable for researchers working on assistive computer aided support systems for subjects with disabilities due to physical or mental disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...