Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37112452

ABSTRACT

This paper presents a trainable hybrid approach involving a shallow autoencoder (AE) and a conventional classifier for epileptic seizure detection. The signal segments of a channel of electroencephalogram (EEG) (EEG epochs) are classified as epileptic and non-epileptic by employing its encoded AE representation as a feature vector. Analysis on a single channel-basis and the low computational complexity of the algorithm allow its use in body sensor networks and wearable devices using one or few EEG channels for wearing comfort. This enables the extended diagnosis and monitoring of epileptic patients at home. The encoded representation of EEG signal segments is obtained based on training the shallow AE to minimize the signal reconstruction error. Extensive experimentation with classifiers has led us to propose two versions of our hybrid method: (a) one yielding the best classification performance compared to the reported methods using the k-nearest neighbor (kNN) classifier and (b) the second with a hardware-friendly architecture and yet with the best classification performance compared to other reported methods in this category using a support-vector machine (SVM) classifier. The algorithm is evaluated on the Children's Hospital Boston, Massachusetts Institute of Technology (CHB-MIT), and University of Bonn EEG datasets. The proposed method achieves 98.85% accuracy, 99.29% sensitivity, and 98.86% specificity on the CHB-MIT dataset using the kNN classifier. The best figures using the SVM classifier for accuracy, sensitivity, and specificity are 99.19%, 96.10%, and 99.19%, respectively. Our experiments establish the superiority of using an AE approach with a shallow architecture to generate a low-dimensionality yet effective EEG signal representation capable of high-performance abnormal seizure activity detection at a single-channel EEG level and with a fine granularity of 1 s EEG epochs.


Subject(s)
Epilepsy , Signal Processing, Computer-Assisted , Child , Humans , Epilepsy/diagnosis , Seizures/diagnosis , Electroencephalography/methods , Support Vector Machine , Algorithms
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 643-646, 2021 11.
Article in English | MEDLINE | ID: mdl-34891375

ABSTRACT

Patient independent epileptic seizure detection algorithm for scalp electroencephalogram (EEG) data is pro- posed in this paper. Principal motivation of this work is to integrate neural and conventional machine learning methods to develop a classification system which can advance the current wearable health systems in terms of computational complexity and accuracy. Being based on processing a single channel EEG processing, the approach is suitable for usage with small wireless sensors. A shallow autoencoder model is utilized for sparse representation of the EEG signal followed by k-nearest neighbor (kNN) classifier to categorize the data as epileptic or non-epileptic. Using a single EEG channel an optimum sparsity level is explored in the encoded sample. Attaining an accuracy, sensitivity and specificity of 98.85%, 99.29% and 98.86% respectively, for CHB-MIT scalp EEG database, proposed classification method outperforms state of- the-art seizure detection methodologies. Experiments has shown that this performance was possible by using a sparsity level of 4 in the auto-encoder. Furthermore, use of shallow learning instead of deep learning approach for generation of sparse but effective representation is computationally lighter than many other feature extraction and preprocessing methods.


Subject(s)
Epilepsy , Signal Processing, Computer-Assisted , Algorithms , Electroencephalography , Epilepsy/diagnosis , Humans , Seizures/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...