Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Nanotechnology ; 35(35)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38806018

ABSTRACT

Nanotechnology has gained immense popularity and observed rapid development due to the remarkable physio-chemical properties of nanoparticles (NPs) and related nanomaterials. The green production of NPs has many benefits over traditional techniques because the current procedures are expensive, time-consuming, and involve harmful substances that limit their applicability. This study aimed to use a novel green source, theSalsola imbricata(SI) plant, which is commonly found in Central Asia and known for its medicinal properties as a reducing and stabilizing agent for the synthesis of AgNPs. The current study also utilized efficient statistical design, the Plackett-Burman Design (PBD) of Experiment method to synthesize the NPs. The characterization of NPs was carried out using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, and scanning electron microscopy (SEM). The PBD results showed that only two out of four factorsi.e.AgNO3concentration and incubation time, were significant for the synthesis of SI-AgNPs. While remaining factors, incubation temperature and plant extract: AgNO3ratio were non-significant. The SEM analysis result showed that SI-AgNPs had a size of 20-50 nm. The SI-AgNPs demonstrated strong antibacterial activity against oral pathogens such asS. mutans and Lactobacillus acidophilus, with the highest efficacy observed at a concentration of 2 mg ml-1. The addition of SI-AgNPs in glass ionomer cement significantly increased the antibacterial activity of GIC againstS. mutans. Based on the results of the current study, the plant based AgNPs can be further evaluated in detail as alternate antimicrobial agent either alone or in combination with other antimicrobial agents for different dental applications.


Subject(s)
Anti-Bacterial Agents , Glass Ionomer Cements , Metal Nanoparticles , Microbial Sensitivity Tests , Plant Extracts , Silver , Streptococcus mutans , Silver/chemistry , Silver/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Metal Nanoparticles/chemistry , Glass Ionomer Cements/chemistry , Glass Ionomer Cements/pharmacology , Streptococcus mutans/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Lactobacillus acidophilus/drug effects , Green Chemistry Technology/methods , Spectroscopy, Fourier Transform Infrared
2.
Microsc Res Tech ; 86(7): 823-833, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37232066

ABSTRACT

Green synthesis of nanoparticles is an emerging field due to it's biosafety and promising results. Biological systems due to their biodiversity are employed in different production processes. In this study Spirulina platensis mediated silver nanoparticles (S-AgNPs) production was done. The Uv spectra, FTIR and SEM analysis was performed for the characterization of biosynthesized S-AgNPs. The biocompatibility evaluation of S-AgNPs was done through hemolysis analysis. S-AgNPs were also evaluated for anticoagulant and thrombolytic potential. In addition to the medical applications of S-AgNPs, silver nanoparticles have been known to show potential industrial applications among which one application is the utilization of silver nanoparticles in the degradation of toxic industrial dyes. Therefore, degradation assay of Eosin Y and Methylene Blue dyes was estimated. The SEM analysis of S-AgNPs showed the particle size of 50-65 nm, whereas the biocompatibility analysis showed that these S-AgNPs are biocompatible at ≤400 µM concentration. The S-AgNPs showed good anticoagulant potential and thrombolytic potential and were able to degrade 44% of the thrombus. The S-AgNPs significantly degraded 76% of Eosin Y within 30 min, whereas Methylene Blue was 80% degraded within 20 min (P-value ≤ .001). To the best of our knowledge, the dye degradation of Eosin Y, thrombolytic activity and anticoagulant activity of S-AgNPs produced from the biomass of Spirulina platensis has been reported for the first time. In the current study, we conclude that our biosynthesized S-AgNPs showed promising medical and industrial applications and these nanoparticles can be further evaluated and upscaled for large scale applications.


Subject(s)
Coloring Agents , Metal Nanoparticles , Silver/pharmacology , Eosine Yellowish-(YS) , Methylene Blue , Anticoagulants , Plant Extracts , Anti-Bacterial Agents
3.
Braz. arch. biol. technol ; 64: e21200639, 2021. tab, graf
Article in English | LILACS | ID: biblio-1278433

ABSTRACT

Abstract Ananas Comosus (also known as pineapple) is a part of Bromeliaceae family and it is consumed as food as well as folk medicine for the treatment of various diseases. It is reported that pineapple is a rich source of bromelain, a cysteine protease and it is considered as an important enzyme in different industries due to its significant therapeutic and industrial applications such as anticancer, anti-inflammatory and meat tenderizing. Bromelain is mostly present in fruit and stem of pineapple, but it is reported that crown, core, and peels, which constitute the waste of the pineapple plant, also contain bromelain but limited data is available. Therefore, the proposed study aimed at utilizing pineapple waste for the extraction and characterization of bromelain. Firstly, crude bromelain was extracted with phosphate buffer (pH 7), then it was subjected to partial purification using different fractions of ammonium sulphate (NH4)2SO4 such as 30, 40, 50 and 60% followed by desalting and concentration. Enzyme activity was calculated by using casein digesting unit (CDU) method. The results demonstrated that the crown bromelain showed highest purification of 4.34-fold at 30% (NH4)2SO4 saturation, whereas core and peel bromelain showed highest purification of 2.75 and 2.59-fold at 40% (NH4)2SO4 saturation. The molecular weight of crude and partially purified bromelain was determined by SDS-PAGE analysis and found to be 26 KDa. The pH and thermal stability of all the parts of pineapple showed maximum stability at pH 7 and at 35oC temperature.


Subject(s)
Bromelains/isolation & purification , Enzyme Activation , Ammonium Sulfate , Peptide Hydrolases , Electrophoresis, Polyacrylamide Gel
SELECTION OF CITATIONS
SEARCH DETAIL
...