Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 8(5)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37754189

ABSTRACT

In recent years, disease attacks have posed continuous threats to agriculture and caused substantial losses in the economy. Thus, early detection and classification could minimize the spread of disease and help to improve yield. Meanwhile, deep learning has emerged as the significant approach to detecting and classifying images. The classification performed using the deep learning approach mainly relies on large datasets to prevent overfitting problems. The Automatic Segmentation and Hyper Parameter Optimization Artificial Rabbits Algorithm (AS-HPOARA) is developed to overcome the above-stated issues. It aims to improve plant leaf disease classification. The Plant Village dataset is used to assess the proposed AS-HPOARA approach. Z-score normalization is performed to normalize the images using the dataset's mean and standard deviation. Three augmentation techniques are used in this work to balance the training images: rotation, scaling, and translation. Before classification, image augmentation reduces overfitting problems and improves the classification accuracy. Modified UNet employs a more significant number of fully connected layers to better represent deeply buried characteristics; it is considered for segmentation. To convert the images from one domain to another in a paired manner, the classification is performed by HPO-based ARA, where the training data get increased and the statistical bias is eliminated to improve the classification accuracy. The model complexity is minimized by tuning the hyperparameters that reduce the overfitting issue. Accuracy, precision, recall, and F1 score are utilized to analyze AS-HPOARA's performance. Compared to the existing CGAN-DenseNet121 and RAHC_GAN, the reported results show that the accuracy of AS-HPOARA for ten classes is high at 99.7%.

2.
Comput Intell Neurosci ; 2022: 2455259, 2022.
Article in English | MEDLINE | ID: mdl-35814591

ABSTRACT

Industry 4.0, with the widespread use of IoT, is a significant opportunity to improve the reliability of industrial equipment through problem detection. It is difficult to utilize a unified model to depict the working condition of devices in real-world industrial scenarios because of the complex and dynamic relationship between devices. The scope of this research is that it can detect equipment defects and deploys them in a natural production environment. The proposed research is describing an online detection method for system failures based on long short-term memory neural networks. In recent years, deep learning technology has taken over as the primary method for detecting faults. A neural network with a long short-term memory is used to develop an online defect detection model. Feature extraction from sensor data is done using the curve alignment method. Based on long-term memory neural networks, the fault detection model is built (LSTM). In the end, sliding window technology is used to identify and fix the problem: the model's online detection and update. The method's efficacy is demonstrated by experiments based on real data from power plant sensors.


Subject(s)
Deep Learning , Neural Networks, Computer , Reproducibility of Results , Research Design , Technology
3.
Comput Intell Neurosci ; 2022: 5497120, 2022.
Article in English | MEDLINE | ID: mdl-35669675

ABSTRACT

The SEMRCNN model is proposed for autonomously extracting prostate cancer locations from regions of multiparametric magnetic resonance imaging (MP-MRI). Feature maps are explored in order to provide fine segmentation based on the candidate regions. Two parallel convolutional networks retrieve these maps of apparent diffusion coefficient (ADC) and T2W images, which are then integrated to use the complimentary information in MP-MRI. By utilizing extrusion and excitation blocks, it is feasible to automatically increase the number of relevant features in the fusion feature map. The aim of this study is to study the current scenario of the SE Mask-RCNN and deep convolutional network segmentation model that can automatically identify prostate cancer in the MP-MRI prostatic region. Experiments are conducted using 140 instances. SEMRCNN segmentation of prostate cancer lesions has a Dice coefficient of 0.654, a sensitivity of 0.695, a specificity of 0.970, and a positive predictive value of 0.685. SEMRCNN outperforms other models like as V net, Resnet50-U-net, Mask-RCNN, and U network model for prostate cancer MP-MRI segmentation. This approach accomplishes fine segmentation of lesions by recognizing and finding potential locations of prostate cancer lesions, eliminating interference from surrounding areas, and improving the learning of the lesions' features.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Prostatic Neoplasms , Delivery of Health Care , Diffusion Magnetic Resonance Imaging , Humans , Learning , Magnetic Resonance Imaging/methods , Male , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
4.
Comput Intell Neurosci ; 2022: 8173372, 2022.
Article in English | MEDLINE | ID: mdl-35463278

ABSTRACT

In the contemporary era of unprecedented innovations such as the Internet of Things (IoT), modern applications cannot be imagined without the presence of a wireless sensor network (WSN). Nodes in WSN use neighbor discovery (ND) protocols to have necessary communication among the nodes. The neighbor discovery process is crucial as it is to be done with energy efficiency and minimize discovery latency and maximum percentage of neighbors discovered. The current ND approaches that are indirect in nature are categorized into methods of removal of active slots from wake-up schedules and intelligent addition of new slots. This work develops a lightweight intrusion detection system (IDS) based on two machine learning approaches, namely, feature selection and feature classification, in order to improve the security of the Internet of Things (IoT) while transferring medical data through a cloud platform. In order to take advantage of the comparatively cheap processing cost of the filter-based technique, the feature selection was carried out. The two methods are found to have certain drawbacks. The first category disturbs the original integrity of wake-up schedules leading to reduced chances of discovering new nodes in WSN as neighbors. When the second category is followed, it may have inefficient slots in the wake-up schedules leading to performance degradation. Therefore, the motivation behind the work in this paper is that by combining the two categories, it is possible to reap the benefits of both and get rid of the limitations of both. Making a hybrid is achieved by introducing virtual nodes that help maximize performance by ensuring the original integrity of wake-up schedules and adding efficient active slots. Thus, a Hybrid Approach to Neighbor Discovery (HAND) protocol is realized in WSN. The simulation study revealed that HAND outperforms the existing indirect ND models.


Subject(s)
Internet of Things , Computer Simulation , Machine Learning
5.
Biomed Res Int ; 2022: 5765629, 2022.
Article in English | MEDLINE | ID: mdl-35345527

ABSTRACT

Biomedical researchers and biologists often search a large amount of literature to find the relationship between biological entities, such as drug-drug and compound-protein. With the proliferation of medical literature and the development of deep learning, the automatic extraction of biological entity interaction relationships from literature has shown great potential. The fundamental scope of this research is that the approach described in this research uses technologies like dynamic word vectors and multichannel convolution to learn a larger variety of relational expression semantics, allowing it to detect more entity connections. The extraction of biological entity relationships is the foundation for achieving intelligent medical care, which may increase the effectiveness of intelligent medical question answering and enhance the development of precision healthcare. In the past, deep learning methods have achieved specific results, but there are the following problems: the model uses static word vectors, which cannot distinguish polysemy; the weight of words is not considered, and the extraction effect of long sentences is poor; the integration of various models can improve the sample imbalance problem, the model is more complex. The purpose of this work is to create a global approach for eliminating different physical entity links, such that the model can effectively extract the interpretation of the expression relationship without having to develop characteristics manually. To this end, a deep multichannel CNN model (MC-CNN) based on the residual structure is proposed, generating dynamic word vectors through BERT (Bidirectional Encoder Representation from Transformers) to improve the accuracy of lexical semantic representation and uses multihead attention to capture the dependencies of long sentences and by designing the Ranking loss function to replace the multimodel ensemble to reduce the impact of sample imbalance. Tested on multiple datasets, the results show that the proposed method has good performance.


Subject(s)
Proteins , Semantics
6.
J Healthc Eng ; 2022: 6462657, 2022.
Article in English | MEDLINE | ID: mdl-35047155

ABSTRACT

BACKGROUND: Even in today's environment, when there is a plethora of information accessible, it may be difficult to make appropriate choices for one's well-being. Data mining, machine learning, and computational statistics are among the most popular arenas of training today, and they are all aimed at secondary empowered person in making good decisions that will maximize the outcome of whatever working area they are involved with. Because the degree of rise in the number of patient roles is directly related to the rate of people growth and lifestyle variations, the healthcare sector has a significant need for data processing services. When it comes to cancer, the prognosis is an expression that relates to the possibility of the patient surviving in general, but it may also be used to describe the severity of the sickness as it will present itself in the patient's future timeline. Methodology. The proposed technique consists of three stages: input data acquisition, preprocessing, and classification. Data acquisition consists of input raw data which is followed by preprocessing to eliminate the missed data and the classification is carried out using ensemble classifier to analyze the stages of cancer. This study explored the combined influence of the prominent labels in conjunction with one another utilizing the multilabel classifier approach, which is successful. Finally, an ensemble classifier model has been constructed and experimentally validated to increase the accuracy of the classifier model, which has been previously shown. The entire performance of the recommended and tested models demonstrates a steady development of 2% to 6% over the baseline presentation on the baseline performance. RESULTS: Providing a good contribution to the general health welfare of noncommercial potential workers in the healthcare sector is an opportunity provided by this recommended job outcome. It is anticipated that alternative solutions to these constraints, as well as automation of the whole process flow of all five phases, will be the key focus of the work to be carried out shortly. Predicting health status of employee in industry or information trends is made easier by these data patterns. The proposed classifier achieves the accuracy rate of 93.265%.


Subject(s)
Algorithms , Data Mining , Delivery of Health Care , Humans , Intelligence , Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...