Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 19(4)2022 08 17.
Article in English | MEDLINE | ID: mdl-35905708

ABSTRACT

One of the primary goals in cognitive neuroscience is to understand the neural mechanisms on which cognition is based. Researchers are trying to find how cognitive mechanisms are related to oscillations generated due to brain activity. The research focused on this topic has been considerably aided by developing non-invasive brain stimulation techniques. The dynamics of brain networks and the resultant behavior can be affected by non-invasive brain stimulation techniques, which make their use a focus of interest in many experiments and clinical fields. One essential non-invasive brain stimulation technique is transcranial electrical stimulation (tES), subdivided into transcranial direct and alternating current stimulation. tES has recently become more well-known because of the effective results achieved in treating chronic conditions. In addition, there has been exceptional progress in the interpretation and feasibility of tES techniques. Summarizing the beneficial effects of tES, this article provides an updated depiction of what has been accomplished to date, brief history, and the open questions that need to be addressed in the future. An essential issue in the field of tES is stimulation duration. This review briefly covers the stimulation durations that have been utilized in the field while monitoring the brain using functional-near infrared spectroscopy-based brain imaging.


Subject(s)
Transcranial Direct Current Stimulation , Brain/physiology , Cognition/physiology , Spectroscopy, Near-Infrared , Transcranial Direct Current Stimulation/methods
2.
Neural Regen Res ; 17(8): 1850-1856, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35017448

ABSTRACT

Mild cognitive impairment (MCI) is a precursor to Alzheimer's disease. It is imperative to develop a proper treatment for this neurological disease in the aging society. This observational study investigated the effects of acupuncture therapy on MCI patients. Eleven healthy individuals and eleven MCI patients were recruited for this study. Oxy- and deoxy-hemoglobin signals in the prefrontal cortex during working-memory tasks were monitored using functional near-infrared spectroscopy. Before acupuncture treatment, working-memory experiments were conducted for healthy control (HC) and MCI groups (MCI-0), followed by 24 sessions of acupuncture for the MCI group. The acupuncture sessions were initially carried out for 6 weeks (two sessions per week), after which experiments were performed again on the MCI group (MCI-1). This was followed by another set of acupuncture sessions that also lasted for 6 weeks, after which the experiments were repeated on the MCI group (MCI-2). Statistical analyses of the signals and classifications based on activation maps as well as temporal features were performed. The highest classification accuracies obtained using binary connectivity maps were 85.7% HC vs. MCI-0, 69.5% HC vs. MCI-1, and 61.69% HC vs. MCI-2. The classification accuracies using the temporal features mean from 5 seconds to 28 seconds and maximum (i.e, max(5:28 seconds)) values were 60.6% HC vs. MCI-0, 56.9% HC vs. MCI-1, and 56.4% HC vs. MCI-2. The results reveal that there was a change in the temporal characteristics of the hemodynamic response of MCI patients due to acupuncture. This was reflected by a reduction in the classification accuracy after the therapy, indicating that the patients' brain responses improved and became comparable to those of healthy subjects. A similar trend was reflected in the classification using the image feature. These results indicate that acupuncture can be used for the treatment of MCI patients.

3.
Sensors (Basel) ; 21(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34883949

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment. Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this preliminary study, we applied standard fNIRS data processing pipeline, i.e., optical densities conversation, signal processing, feature extraction, and classification algorithm implementation. Physiological and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order Savitzky-Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin changes. Sophisticated machine learning algorithms were applied, such as support vector machine (SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XGBoost). The average classification accuracies achieved were 0.75±0.04, 0.75±0.05, and 0.77±0.06 using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and XGBoost classifiers performed exceptionally well on such a high-class problem. The results need to be further investigated. In the future, a more in-depth analysis of the signal in both temporal and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved are promising results and could open up a new research direction leading to enrichment of control commands generation for fNIRS-based brain-computer interface applications.


Subject(s)
Brain-Computer Interfaces , Spectroscopy, Near-Infrared , Discriminant Analysis , Humans , Movement , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...