Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mol Plant Microbe Interact ; 37(3): 190-195, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38205771

ABSTRACT

Transcriptional corepressors form an ancient and essential layer of gene expression control in eukaryotes. TOPLESS and TOPLESS-RELATED (TPL/TPR) proteins constitute a conserved family of Groucho (Gro)/thymidine uptake 1 (Tup1)-type transcriptional corepressors and control diverse growth, developmental, and stress signaling responses in plants. Because of their central and versatile regulatory roles, they act as a signaling hub to integrate various input signaling pathways in the transcriptional responses. Recently, increasing pieces of evidence indicate the roles of TPL/TPR family proteins in the modulation of plant immunity. This is supported by studies on effectors of distantly related pathogens that target TPL/TPR proteins in planta. In this short review, we will summarize the latest findings concerning pathogens targeting plant TPL/TPR proteins to manipulate plant signaling responses for the successful invasion of their hosts. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Transcription Factors/genetics , Plants/metabolism
2.
New Phytol ; 241(4): 1747-1762, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38037456

ABSTRACT

Ustilago maydis is a biotrophic fungus that causes tumor formation on all aerial parts of maize. U. maydis secretes effector proteins during penetration and colonization to successfully overcome the plant immune response and reprogram host physiology to promote infection. In this study, we functionally characterized the U. maydis effector protein Topless (TPL) interacting protein 6 (Tip6). We found that Tip6 interacts with the N-terminus of RELK2 through its two Ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. We show that the EAR motifs are essential for the virulence function of Tip6 and critical for altering the nuclear distribution pattern of RELK2. We propose that Tip6 mimics the recruitment of RELK2 by plant repressor proteins, thus disrupting host transcriptional regulation. We show that a large group of AP2/ERF B1 subfamily transcription factors are misregulated in the presence of Tip6. Our study suggests a regulatory mechanism where the U. maydis effector Tip6 utilizes repressive domains to recruit the corepressor RELK2 to disrupt the transcriptional networks of the host plant.


Subject(s)
Basidiomycota , Plant Diseases , Ustilago , Plant Diseases/microbiology , Zea mays/microbiology , Ustilago/metabolism , Co-Repressor Proteins/metabolism , Carcinogenesis , Fungal Proteins/metabolism
3.
J Fungi (Basel) ; 9(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38132785

ABSTRACT

A common feature of many plant-colonizing organisms is the exploitation of plant signaling and developmental pathways to successfully establish and proliferate in their hosts. Auxins are central plant growth hormones, and their signaling is heavily interlinked with plant development and immunity responses. Smuts, as one of the largest groups in basidiomycetes, are biotrophic specialists that successfully manipulate their host plants and cause fascinating phenotypes in so far largely enigmatic ways. This review gives an overview of the growing understanding of how and why smut fungi target the central and conserved auxin growth signaling pathways in plants.

4.
Methods Mol Biol ; 2690: 87-100, 2023.
Article in English | MEDLINE | ID: mdl-37450139

ABSTRACT

Protein-protein interactions play an essential role in host-pathogen interactions. Phytopathogens secrete a cocktail of effector proteins to suppress plant immunity and reprogram host cell metabolism in their favor. Identification and characterization of effectors and their target protein complexes by co-immunoprecipitation can help to gain a deeper understanding of the functions of individual effectors during pathogenicity and can also provide new insights into the wiring of plant signaling pathways or metabolic complexes. Here we describe a detailed protocol to perform co-immunoprecipitation of effector-target protein complexes from plant extracts with an example of the Ustilago maydis/maize pathosystem for which we also provide a fungal protoplast transformation and maize seedling infection protocols.


Subject(s)
Plant Diseases , Ustilago , Plant Diseases/microbiology , Ustilago/metabolism , Virulence , Host-Pathogen Interactions , Seedlings/metabolism , Zea mays/metabolism , Fungal Proteins/metabolism
5.
New Phytol ; 236(4): 1455-1470, 2022 11.
Article in English | MEDLINE | ID: mdl-35944559

ABSTRACT

Plant biotrophic pathogens employ secreted molecules, called effectors, to suppress the host immune system and redirect the host's metabolism and development in their favour. Putative effectors of the gall-inducing maize pathogenic fungus Ustilago maydis were analysed for their ability to induce auxin signalling in plants. Using genetic, biochemical, cell-biological, and bioinformatic approaches we functionally elucidate a set of five, genetically linked effectors, called Topless (TPL) interacting protein (Tips) effectors that induce auxin signalling. We show that Tips induce auxin signalling by interfering with central corepressors of the TPL family. CRISPR-Cas9 mutants and deletion strain analysis indicate that the auxin signalling inducing subcluster effectors plays a redundant role in virulence. Although none of the Tips seem to have a conserved interaction motif, four of them bind solely to the N-terminal TPL domain and, for Tip1 and Tip4, we demonstrate direct competition with auxin/indole-3-acetic acid transcriptional repressors for their binding to TPL class of corepressors. Our findings reveal that TPL proteins, key regulators of growth-defence antagonism, are a major target of the U. maydis effectome.


Subject(s)
Ustilago , Ustilago/genetics , Plant Diseases/microbiology , Fungal Proteins/metabolism , Zea mays/microbiology , Indoleacetic Acids/metabolism , Co-Repressor Proteins/metabolism
6.
Plant Commun ; 3(2): 100269, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35529945

ABSTRACT

In plants, the antagonism between growth and defense is hardwired by hormonal signaling. The perception of pathogen-associated molecular patterns (PAMPs) from invading microorganisms inhibits auxin signaling and plant growth. Conversely, pathogens manipulate auxin signaling to promote disease, but how this hormone inhibits immunity is not fully understood. Ustilago maydis is a maize pathogen that induces auxin signaling in its host. We characterized a U. maydis effector protein, Naked1 (Nkd1), that is translocated into the host nucleus. Through its native ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, Nkd1 binds to the transcriptional co-repressors TOPLESS/TOPLESS-related (TPL/TPRs) and prevents the recruitment of a transcriptional repressor involved in hormonal signaling, leading to the de-repression of auxin and jasmonate signaling and thereby promoting susceptibility to (hemi)biotrophic pathogens. A moderate upregulation of auxin signaling inhibits the PAMP-triggered reactive oxygen species (ROS) burst, an early defense response. Thus, our findings establish a clear mechanism for auxin-induced pathogen susceptibility. Engineered Nkd1 variants with increased expression or increased EAR-mediated TPL/TPR binding trigger typical salicylic-acid-mediated defense reactions, leading to pathogen resistance. This implies that moderate binding of Nkd1 to TPL is a result of a balancing evolutionary selection process to enable TPL manipulation while avoiding host recognition.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Plant Immunity
7.
Methods Mol Biol ; 2494: 291-298, 2022.
Article in English | MEDLINE | ID: mdl-35467215

ABSTRACT

Corn head smut fungus Sporisorium reilianum f. sp. zeae is a biotrophic pathogen belonging to the class of basidiomycetes. Under field conditions, it infects maize (Zea mays L.) still in the soil at early stages of development. Later, the infection spreads systemically to all aerial parts of the plant with mild symptoms of anthocyanin accumulation until the development of inflorescences, where it causes a replacement of maize inflorescences with spore-filled sori or leaf-like structures. Recently, Sporisorium reilianum (S. reilianum) is being established as a model organism to study fungal-plant interactions and corresponding virulence factors. Here, we describe a detailed protocol for a method that has been described and employed previously (Ghareeb H, Zhao Y, Schirawski J, Molecular plant pathology 20:124-136, 2019) to test the virulence of S. reilianum in maize under controlled laboratory conditions.


Subject(s)
Basidiomycota , Zea mays , Plant Diseases/microbiology , Plants , Zea mays/microbiology
8.
PLoS Pathog ; 17(6): e1009641, 2021 06.
Article in English | MEDLINE | ID: mdl-34166468

ABSTRACT

Biotrophic plant pathogens secrete effector proteins to manipulate the host physiology. Effectors suppress defenses and induce an environment favorable to disease development. Sequence-based prediction of effector function is impeded by their rapid evolution rate. In the maize pathogen Ustilago maydis, effector-coding genes frequently organize in clusters. Here we describe the functional characterization of the pleiades, a cluster of ten effector genes, by analyzing the micro- and macroscopic phenotype of the cluster deletion and expressing these proteins in planta. Deletion of the pleiades leads to strongly impaired virulence and accumulation of reactive oxygen species (ROS) in infected tissue. Eight of the Pleiades suppress the production of ROS upon perception of pathogen associated molecular patterns (PAMPs). Although functionally redundant, the Pleiades target different host components. The paralogs Taygeta1 and Merope1 suppress ROS production in either the cytoplasm or nucleus, respectively. Merope1 targets and promotes the auto-ubiquitination activity of RFI2, a conserved family of E3 ligases that regulates the production of PAMP-triggered ROS burst in plants.


Subject(s)
Basidiomycota/physiology , Basidiomycota/pathogenicity , Fungal Proteins/metabolism , Plant Diseases/immunology , Plant Immunity/immunology , Fungal Proteins/genetics , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Virulence/physiology , Virulence Factors/genetics , Virulence Factors/metabolism
9.
Mol Plant Microbe Interact ; 32(12): 1623-1634, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31657673

ABSTRACT

Pathogenic fungi can have devastating effects on agriculture and health. One potential challenge in dealing with pathogens is the possibility of a host jump (i.e., when a pathogen infects a new host species). This can lead to the emergence of new diseases or complicate the management of existing threats. We studied host specificity by using a hybrid fungus formed by mating two closely related fungi: Ustilago bromivora, which normally infects Brachypodium spp., and U. hordei, which normally infects barley. Although U. hordei was unable to infect Brachypodium spp., the hybrid could. These hybrids also displayed the same mating-type bias that had been observed in U. bromivora and provide evidence of a dominant spore-killer-like system on the sex chromosome of U. bromivora. By analyzing the genomic composition of 109 hybrid strains, backcrossed with U. hordei over four generations, we identified three regions associated with infection on Brachypodium spp. and 75 potential virulence candidates. The most strongly associated region was located on chromosome 8, where seven genes encoding predicted secreted proteins were identified. The fact that we identified several regions relevant for pathogenicity on Brachypodium spp. but that none were essential suggests that host specificity, in the case of U. bromivora, is a multifactorial trait which can be achieved through different subsets of virulence factors.


Subject(s)
Brachypodium , Ustilago , Brachypodium/microbiology , Genomics , Hordeum/microbiology , Hybridization, Genetic , Ustilago/genetics , Ustilago/pathogenicity , Virulence/genetics
10.
Proc Natl Acad Sci U S A ; 113(40): E5982-E5991, 2016 10 04.
Article in English | MEDLINE | ID: mdl-27655893

ABSTRACT

Brassinosteroids (BRs) are growth-promoting plant hormones that play a role in abiotic stress responses, but molecular modes that enable this activity remain largely unknown. Here we show that BRs participate in the regulation of freezing tolerance. BR signaling-defective mutants of Arabidopsis thaliana were hypersensitive to freezing before and after cold acclimation. The constitutive activation of BR signaling, in contrast, enhanced freezing resistance. Evidence is provided that the BR-controlled basic helix-loop-helix transcription factor CESTA (CES) can contribute to the constitutive expression of the C-REPEAT/DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR (CBF) transcriptional regulators that control cold responsive (COR) gene expression. In addition, CBF-independent classes of BR-regulated COR genes are identified that are regulated in a BR- and CES-dependent manner during cold acclimation. A model is presented in which BRs govern different cold-responsive transcriptional cascades through the posttranslational modification of CES and redundantly acting factors. This contributes to the basal resistance against freezing stress, but also to the further improvement of this resistance through cold acclimation.

11.
Nat Commun ; 6: 8717, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26541513

ABSTRACT

Auxin and cytokinin are key endogenous regulators of plant development. Although cytokinin-mediated modulation of auxin distribution is a developmentally crucial hormonal interaction, its molecular basis is largely unknown. Here we show a direct regulatory link between cytokinin signalling and the auxin transport machinery uncovering a mechanistic framework for cytokinin-auxin cross-talk. We show that the CYTOKININ RESPONSE FACTORS (CRFs), transcription factors downstream of cytokinin perception, transcriptionally control genes encoding PIN-FORMED (PIN) auxin transporters at a specific PIN CYTOKININ RESPONSE ELEMENT (PCRE) domain. Removal of this cis-regulatory element effectively uncouples PIN transcription from the CRF-mediated cytokinin regulation and attenuates plant cytokinin sensitivity. We propose that CRFs represent a missing cross-talk component that fine-tunes auxin transport capacity downstream of cytokinin signalling to control plant development.


Subject(s)
Arabidopsis Proteins/genetics , Cytokinins/metabolism , Indoleacetic Acids/metabolism , Membrane Transport Proteins/genetics , Transcription Factors/genetics , Arabidopsis , Arabidopsis Proteins/metabolism , Chromatin Immunoprecipitation , Gene Expression Regulation, Plant , Green Fluorescent Proteins , Membrane Transport Proteins/metabolism , Microscopy, Confocal , Plant Roots/metabolism , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Response Elements , Signal Transduction , Transcription Factors/metabolism
12.
Nat Commun ; 5: 4687, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25134617

ABSTRACT

Brassinosteroids (BRs) are steroid hormones that are essential for plant growth. Responses to these hormones are mediated by transcription factors of the bri1-EMS suppressor 1/brassinazole resistant 1 subfamily, and BRs activate these factors by impairing their inhibitory phosphorylation by GSK3/shaggy-like kinases. Here we show that BRs induce nuclear compartmentalization of CESTA (CES), a basic helix-loop-helix transcription factor that regulates BR responses, and reveal that this process is regulated by CES SUMOylation. We demonstrate that CES contains an extended SUMOylation motif, and that SUMOylation of this motif is antagonized by phosphorylation to control CES subnuclear localization. Moreover, we provide evidence that phosphorylation regulates CES transcriptional activity and protein turnover by the proteasome. A coordinated modification model is proposed in which, in a BR-deficient situation, CES is phosphorylated to activate target gene transcription and enable further posttranslational modification that controls CES protein stability and nuclear dynamics.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/physiology , Brassinosteroids , Signal Transduction/physiology , Transcription Factors/physiology , Helix-Loop-Helix Motifs/physiology , Models, Biological , Phosphorylation/physiology , Plant Growth Regulators/physiology , Protein Processing, Post-Translational/physiology , Sumoylation/physiology
13.
Gerontology ; 60(1): 49-55, 2014.
Article in English | MEDLINE | ID: mdl-24135638

ABSTRACT

BACKGROUND: In plants, the final stage of organ development is termed senescence. This is a deterioration process that leads to the decay of tissues and organs, and that, in the case of annual, biennial and/or monocarpic plants, leads to the death of the plant itself. The main function of leaf senescence is nutrient recycle and, since this confers an adaptive advantage, it can be considered an evolutionary selected process. Multiple developmental and environmental signals control senescence, and among them plant hormones are understood to play important roles. In particular, the function of cytokinins and ethylene in senescence has been studied for decades, but it is only since Arabidopsis thaliana was established as a model organism for molecular genetic studies that the underlying molecular and biochemical events have begun to be elucidated. METHODS: In this review, we summarize the present understanding of the role of hormones in the developmental control of leaf senescence in plants and in particular highlight recent studies which address its molecular control. RESULTS: Important findings which connect hormone action to developmental senescence were made in the past few years. For example, it was shown that ethylene activity in natural, age-dependent leaf senescence is conferred by the regulatory function of EIN2, an ethylene-signaling component, in the control of the transcription factor oresara 1 (ORE1), which regulates a large set of senescence-associated genes in their expression. ORE1 mRNA abundance is regulated by the microRNA miR164, which in aging plants is degraded in an EIN2-dependent manner, and it is interesting that another microRNA also governs the hormonal control of senescence. miR319 regulates mRNA abundance of a class of transcription factors which control the expression of LOX2 (lipoxygenase 2), a key enzyme in the JA biosynthetic pathway, and thereby regulates JA homeostasis in senescing leaves. CONCLUSION: Reverse and forward genetics have facilitated the elucidation of molecular mechanisms involved in the control of leaf senescence by phytohormones. Studies initiated on the interactions between the different hormonal pathways that control leaf senescence should improve our knowledge in the future.


Subject(s)
Plant Development/physiology , Plant Growth Regulators/physiology , Abscisic Acid/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Cyclopentanes/metabolism , Cytokinins/physiology , Ethylenes/metabolism , Genes, Plant , Indoleacetic Acids/metabolism , Oxylipins/metabolism , Plant Development/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Physiological Phenomena/genetics , Salicylic Acid/metabolism
14.
J Biol Chem ; 288(11): 7519-7527, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23341468

ABSTRACT

Brassinosteroids (BRs) are steroid hormones that coordinate fundamental developmental programs in plants. In this study we show that in addition to the well established roles of BRs in regulating cell elongation and cell division events, BRs also govern cell fate decisions during stomata development in Arabidopsis thaliana. In wild-type A. thaliana, stomatal distribution follows the one-cell spacing rule; that is, adjacent stomata are spaced by at least one intervening pavement cell. This rule is interrupted in BR-deficient and BR signaling-deficient A. thaliana mutants, resulting in clustered stomata. We demonstrate that BIN2 and its homologues, GSK3/Shaggy-like kinases involved in BR signaling, can phosphorylate the MAPK kinases MKK4 and MKK5, which are members of the MAPK module YODA-MKK4/5-MPK3/6 that controls stomata development and patterning. BIN2 phosphorylates a GSK3/Shaggy-like kinase recognition motif in MKK4, which reduces MKK4 activity against its substrate MPK6 in vitro. In vivo we show that MKK4 and MKK5 act downstream of BR signaling because their overexpression rescued stomata patterning defects in BR-deficient plants. A model is proposed in which GSK3-mediated phosphorylation of MKK4 and MKK5 enables for a dynamic integration of endogenous or environmental cues signaled by BRs into cell fate decisions governed by the YODA-MKK4/5-MPK3/6 module.


Subject(s)
Arabidopsis/metabolism , Brassinosteroids/metabolism , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Plant Stomata/metabolism , Cloning, Molecular , Escherichia coli/metabolism , Glutathione Transferase/metabolism , Models, Biological , Models, Genetic , Phosphorylation , Plants, Genetically Modified , Recombinant Proteins/metabolism , Signal Transduction , Steroids/metabolism
15.
PLoS One ; 8(1): e53650, 2013.
Article in English | MEDLINE | ID: mdl-23335967

ABSTRACT

Brassinosteroids (BRs) are plant steroid hormones with structural similarity to mammalian sex steroids and ecdysteroids from insects. The BRs are synthesized from sterols and are essential regulators of cell division, cell elongation and cell differentiation. In this work we show that voriconazole, an antifungal therapeutic drug used in human and veterinary medicine, severely impairs plant growth by inhibiting sterol-14α-demethylation and thereby interfering with BR production. The plant growth regulatory properties of voriconazole and related triazoles were identified in a screen for compounds with the ability to alter BR homeostasis. Voriconazole suppressed growth of the model plant Arabidopsis thaliana and of a wide range of both monocotyledonous and dicotyledonous plants. We uncover that voriconazole toxicity in plants is a result of a deficiency in BRs that stems from an inhibition of the cytochrome P450 CYP51, which catalyzes a step of BR-dependent sterol biosynthesis. Interestingly, we found that the woodland strawberry Fragaria vesca, a member of the Rosaceae, is naturally voriconazole resistant and that this resistance is conferred by the specific CYP51 variant of F. vesca. The potential of voriconazole as a novel tool for plant research is discussed.


Subject(s)
Biosynthetic Pathways/drug effects , Brassinosteroids/metabolism , Drug Resistance/genetics , Genetic Variation , Pyrimidines/pharmacology , Sterol 14-Demethylase/genetics , Sterols/biosynthesis , Triazoles/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Fragaria/drug effects , Fragaria/genetics , Fragaria/growth & development , Fragaria/metabolism , Metabolome , Phenotype , Pyrimidines/chemistry , Triazoles/chemistry , Voriconazole
16.
FEMS Microbiol Lett ; 331(2): 89-96, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22448845

ABSTRACT

The pHW126-like plasmids are a recently discovered small group of cryptic plasmids replicating by the rolling circle mode. The replication origin of pHW126 consists of a conserved stretch, four perfect direct repeats and a so-called accessory region. The latter increases plasmid stability but is not absolutely necessary for replication. Here, we report that deletion of the accessory region causes rapid multimerization of pHW126. While the number of pHW126-units per cell remains constant, the number of physically independent plasmid molecules is reduced by approximately 40%, rendering random distribution to daughter cells less effective. A conserved inverted repeat within the accessory region could be identified as a sequence necessary for maintaining pHW126 in its monomeric form. A mutant version of pHW126 lacking this inverted repeat could be rescued by placing the single-strand initiation site (ssi) of pHW15 on the plus strand, while including the ssi in the opposite direction had no effect. Thus, our data provide evidence that multimer formation is, besides copy number reduction and ssDNA accumulation, an additional means how loss of a mechanism ensuring efficient lagging strand synthesis may cause destabilization of rolling circle plasmids.


Subject(s)
DNA Replication , DNA, Circular/genetics , DNA, Single-Stranded/genetics , Plasmids/genetics , Base Sequence , DNA, Bacterial/genetics , Escherichia coli/genetics , Inverted Repeat Sequences/genetics , Molecular Sequence Data , Protein Multimerization/genetics , Rahnella/genetics , Replication Origin
17.
BMC Plant Biol ; 11: 51, 2011 Mar 24.
Article in English | MEDLINE | ID: mdl-21429230

ABSTRACT

BACKGROUND: Brassinosteroids (BRs) are signaling molecules that play essential roles in the spatial regulation of plant growth and development. In contrast to other plant hormones BRs act locally, close to the sites of their synthesis, and thus homeostatic mechanisms must operate at the cellular level to equilibrate BR concentrations. Whilst it is recognized that levels of bioactive BRs are likely adjusted by controlling the relative rates of biosynthesis and by catabolism, few factors, which participate in these regulatory events, have as yet been identified. Previously we have shown that the UDP-glycosyltransferase UGT73C5 of Arabidopsis thaliana catalyzes 23-O-glucosylation of BRs and that glucosylation renders BRs inactive. This study identifies the closest homologue of UGT73C5, UGT73C6, as an enzyme that is also able to glucosylate BRs in planta. RESULTS: In a candidate gene approach, in which homologues of UGT73C5 were screened for their potential to induce BR deficiency when over-expressed in plants, UGT73C6 was identified as an enzyme that can glucosylate the BRs CS and BL at their 23-O-positions in planta. GUS reporter analysis indicates that UGT73C6 shows over-lapping, but also distinct expression patterns with UGT73C5 and YFP reporter data suggests that at the cellular level, both UGTs localize to the cytoplasm and to the nucleus. A liquid chromatography high-resolution mass spectrometry method for BR metabolite analysis was developed and applied to determine the kinetics of formation and the catabolic fate of BR-23-O-glucosides in wild type and UGT73C5 and UGT73C6 over-expression lines. This approach identified novel BR catabolites, which are considered to be BR-malonylglucosides, and provided first evidence indicating that glucosylation protects BRs from cellular removal. The physiological significance of BR glucosylation, and the possible role of UGT73C6 as a regulatory factor in this process are discussed in light of the results presented. CONCLUSION: The present study generates essential knowledge and molecular and biochemical tools, that will allow for the verification of a potential physiological role of UGT73C6 in BR glucosylation and will facilitate the investigation of the functional significance of BR glucoside formation in plants.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Glucosides/biosynthesis , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Plant Growth Regulators/biosynthesis , Steroids/biosynthesis , Arabidopsis/enzymology , Arabidopsis/growth & development , Arabidopsis/metabolism , Gene Expression , Protein Transport
18.
EMBO J ; 30(6): 1149-61, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21336258

ABSTRACT

Brassinosteroids (BRs) are steroid hormones that are essential for the development of plants. A tight control of BR homeostasis is vital for modulating their impact on growth responses. Although it is recognized that the rapid adaptation of de novo synthesis has a key role in adjusting required BR levels, our knowledge of the mechanisms governing feedback control is limited. In this study, we identify the transcription factor CESTA as a regulator of BR biosynthesis. ces-D was isolated in a screen of Arabidopsis mutants by BR over-accumulation phenotypes. Loss-of-function analysis and the use of a dominant repressor version revealed functional overlap among CESTA and its homologues and confirmed the role of CESTA in the positive control of BR-biosynthetic gene expression. We provide evidence that CESTA interacts with its homologue BEE1 and can directly bind to a G-box motif in the promoter of the BR biosynthesis gene CPD. Moreover, we show that CESTA subnuclear localization is BR regulated and discuss a model, in which CESTA interplays with BEE1 to control BR biosynthesis and other BR responses.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Biosynthetic Pathways/genetics , Cholestanols/metabolism , Gene Expression Regulation , Plant Growth Regulators/biosynthesis , Steroids, Heterocyclic/metabolism , Transcription Factors/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Brassinosteroids , Protein Interaction Mapping , Transcription Factors/genetics
19.
Plasmid ; 65(1): 70-6, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20854841

ABSTRACT

pHW126, pIGRK, pIGMS31 and pRAO1 are the only known members of a novel and as yet uncharacterised family of rolling circle plasmids. pHW126 contains only two open reading frames, of which one shows homology to pMV158-family mobilisation proteins. Here we provide evidence that the second open reading frame encodes a replication protein (Rep). Mutation or deletion of this gene resulted in replication deficient constructs, but providing functional Rep from a compatible vector rescued these constructs, indicating that Rep acts in trans. An approximately 300 bp cis-acting region representing the origin of replication was identified upstream of the rep gene. The origin was identified to be composed of three parts: an accessory region, a conserved stretch and four perfect tandem repeats. The two latter elements were essential for replication. Constructs with a deletion of the accessory region could still replicate, but their loss rate was high, indicating that the accessory region is necessary for plasmid maintenance under non-selective conditions. Interestingly, pHW126 could replicate in all Enterobacteriaceae tested while Agrobacterium tumefaciens and Pseudomonas syringae were inappropriate hosts. Thus, pHW126 seems to have a rather limited host range.


Subject(s)
DNA, Circular/genetics , Plasmids/genetics , Regulatory Sequences, Nucleic Acid/genetics , Base Sequence , DNA Replication/genetics , Deoxyribonuclease I/metabolism , Genes, Bacterial/genetics , Host Specificity/genetics , Molecular Sequence Data , Open Reading Frames/genetics , Rahnella/enzymology , Rahnella/genetics , Replication Origin/genetics
20.
BMC Microbiol ; 10: 56, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20170524

ABSTRACT

BACKGROUND: Rahnella is a widely distributed genus belonging to the Enterobacteriaceae and frequently present on vegetables. Although Rahnella has interesting agro-economical and industrial properties and several strains possess antibiotic resistances and toxin genes which might spread within microbial communities, little is known about plasmids of this genus. Thus, we isolated a number of Rahnella strains and investigated their complements of small plasmids. RESULTS: In total 53 strains were investigated and 11 plasmids observed. Seven belonged to the ColE1 family; one was ColE2-like and three shared homology to rolling circle plasmids. One of them belonged to the pC194/pUB110 family and two showed similarity to poorly characterised plasmid groups. The G+C content of two rolling circle plasmids deviated considerably from that of Rahnella, indicating that their usual hosts might belong to other genera. Most ColE1-like plasmids formed a subgroup within the ColE1 family that seems to be fairly specific for Rahnella. Intriguingly, the multimer resolution sites of all ColE1-like plasmids had the same orientation with respect to the origin of replication. This arrangement might be necessary to prevent inappropriate synthesis of a small regulatory RNA that regulates cell division. Although the ColE1-like plasmids did not possess any mobilisation system, they shared large parts with high sequence identity in coding and non-coding regions. In addition, highly homologous regions of plasmids isolated from Rahnella and the chromosomes of Erwinia tasmaniensis and Photorhabdus luminescens could be identified. CONCLUSIONS: For the genus Rahnella we observed plasmid-containing isolates at a frequency of 19%, which is in the average range for Enterobacteriaceae. These plasmids belonged to different groups with members of the ColE1-family most frequently found. Regions of striking sequence homology of plasmids and bacterial chromosomes highlight the importance of plasmids for lateral gene transfer (including chromosomal sequences) to distinct genera.


Subject(s)
Plasmids/isolation & purification , Rahnella/genetics , Bacterial Proteins/genetics , Base Sequence , Cloning, Molecular , Gene Transfer, Horizontal , Models, Genetic , Molecular Sequence Data , Multigene Family , Phylogeny , Plasmids/chemistry , Plasmids/genetics , Sequence Alignment , Vegetables/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...