Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 274(Pt 1): 133188, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880456

ABSTRACT

Morphine addiction poses a significant challenge to global healthcare. Current opioid substitution therapies, such as buprenorphine, naloxone and methadone are effective but often lead to dependence. Thus, exploring alternative treatments for opioid addiction is crucial. We have developed a novel vaccine that presents morphine and Pam3Cys (a TLR-2 agonist) on the surface of Acr1 nanoparticles. This vaccine has self-adjuvant properties and targets TLR-2 receptors on antigen-presenting cells, particularly dendritic cells. Our vaccination strategy promotes the proliferation and differentiation of morphine-specific B-cells and Acr1-reactive CD4 T-cells. Additionally, the vaccine elicited the production of high-affinity anti-morphine antibodies, effectively eliminating morphine from the bloodstream and brain in mice. It also reduced the expression of addiction-associated µ-opioid receptor and dopamine genes. The significant increase in memory CD4 T-cells and B-cells indicates the vaccine's ability to induce long-lasting immunity against morphine. This vaccine holds promise as a prophylactic measure against morphine addiction.

2.
Gut Microbes ; 15(2): 2290643, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38087439

ABSTRACT

Aging is an inevitable natural process that impacts every individual, and understanding its effect on the gut microbiome and dendritic cell (DC) functionality in elderly subjects is crucial. DCs are vital antigen-presenting cells (APCs) that orchestrate the immune response, maintaining immune tolerance to self-antigens and bridging innate and adaptive immunity. With aging, there is a shift toward nonspecific innate immunity, resulting in a decline in adaptive immune responses. This alteration raises significant concerns about managing the health of an elderly population. However, the precise impact of aging and microbiome changes on DC function and their implications in lung-associated diseases remain relatively understudied. To illuminate this subject, we will discuss recent advancements in understanding the connections between aging, gut dysbiosis, DCs, and lung diseases. Emphasizing the key concepts linking age-related gut microbiome changes and DC functions, we will focus on their relevance to overall health and immune response in elderly individuals. This article aims to improve our understanding of the intricate relationship between aging, gut microbiome, and DCs, potentially benefiting the management of age-associated diseases and promoting healthy aging.


Subject(s)
Gastrointestinal Microbiome , Lung Diseases , Aged , Humans , Dysbiosis , Immunity, Innate , Dendritic Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...