Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(6)2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35335232

ABSTRACT

Garlic has been reported to inhibit protein glycation, a process that underlies several disease processes, including chronic complications of diabetes mellitus. Biophysical, biochemical, and molecular docking investigations were conducted to assess anti-glycating, antioxidant, and protein structural protection activities of garlic. Results from spectral (UV and fluorescence) and circular dichroism (CD) analysis helped ascertain protein conformation and secondary structure protection against glycation to a significant extent. Further, garlic showed heat-induced protein denaturation inhibition activity (52.17%). It also inhibited glycation, advanced glycation end products (AGEs) formation as well as lent human serum albumin (HSA) protein structural stability, as revealed by reduction in browning intensity (65.23%), decrease in protein aggregation index (67.77%), and overall reduction in cross amyloid structure formation (33.26%) compared with positive controls (100%). The significant antioxidant nature of garlic was revealed by FRAP assay (58.23%) and DPPH assay (66.18%). Using molecular docking analysis, some of the important garlic metabolites were investigated for their interactions with the HSA molecule. Molecular docking analysis showed quercetin, a phenolic compound present in garlic, appears to be the most promising inhibitor of glucose interaction with the HSA molecule. Our findings show that garlic can prevent oxidative stress and glycation-induced biomolecular damage and that it can potentially be used in the treatment of several health conditions, including diabetes and other inflammatory diseases.


Subject(s)
Garlic , Antioxidants/metabolism , Antioxidants/pharmacology , Garlic/chemistry , Glycation End Products, Advanced/metabolism , Glycosylation , Humans , Molecular Docking Simulation
2.
Molecules ; 25(16)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806692

ABSTRACT

Aging causes gradual changes in free radicals, antioxidants, and immune-imbalance in the elderly. This study aims to understand links among aging, gluco-oxidative stress, and autoantibodies in asymptomatic individuals. In vitro glycation of human serum albumin (Gly-HSA) induces appreciable biochemical changes. Significant inhibition of advanced glycation end products (AGEs) formation was achieved using garlic extract (53.75%) and epigallocatechin-3-gallate from green tea (72.5%). Increased amounts of serum carbonyl content (2.42 ± 0.5) and pentosidine (0.0321 ± 0.0029) were detected in IV-S (S represent smokers) vs. IV group individuals. Direct binding ELISA results exhibited significantly high autoantibodies against Gly-HSA in group IV-S (0.55 ± 0.054; p < 0.001) and III-S (0.40 ± 0.044; p < 0.01) individuals as compared to the age matched subjects who were non-smokers (group IV and III). Moreover, high average percent inhibition (51.3 ± 4.1%) was obtained against Gly-HSA in IV-S group individuals. Apparent association constant was found to be high for serum immunoglobulin-G (IgG) from group IV-S (1.18 × 10-6 M) vs. serum IgG from IV group (3.32 × 10-7 M). Aging induced gluco-oxidative stress and AGEs formation may generate neo-epitopes on blood-proteins, contributing to production of autoantibodies in the elderly, especially smokers. Use of anti-glycation natural products may reduce age-related pathophysiological changes.


Subject(s)
Aging/blood , Autoantibodies/blood , Glycation End Products, Advanced/blood , Immunoglobulin G/blood , Oxidative Stress , Adult , Aged , Aged, 80 and over , Female , Glycosylation , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...