Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38891008

ABSTRACT

Pesticides are chemical substances used to kill or control various types of pests, which are hazardous for crops and animals. Pesticides may remain on or in foods after these are applied to crops. Pesticide residue in food has been a major global concern since there are direct and indirect health hazards associated with the regular consumption of foods with pesticide residues. Chlorpyrifos is one of the most used pesticides that has received much attention worldwide due to its detrimental health impact. The presence of chlorpyrifos residue in food crops can have both long-term and short-term effects on consumer health. Bangladesh is an agricultural country that uses a high volume of pesticides every year including chlorpyrifos. This experimental study aimed to analyze chlorpyrifos pesticide residue in locally grown cauliflower, cabbage, and eggplant samples by gas chromatography-mass spectrometry (GC-MS) technique followed by a suitable extraction process. Commercially available cauliflower, cabbage, and eggplant samples along with samples cultivated with the recommended pesticide dose were collected for qualitative and quantitative analysis. Samples cultivated without chlorpyrifos were collected as control samples for the validation study. The method was validated with respect to accuracy, recovery, reproducibility, linearity, limit of detection, and limit of quantification. The method has a limit of detection (LOD) of 0.011 mg/kg and a limit of quantification (LOQ) of 0.034 mg/kg. The experimental results were compared to the maximum residue level (MRL) to assess the human health impact. Chlorpyrifos residue was found in 44% of cauliflower samples with 91% of samples higher than MRL. The residue was found in 68% of cabbage samples with 53% of samples higher than MRL. For eggplant, the residue was found in 80% of the samples with 65% of samples higher than MRL. The risk assessment based on the residue level found in this study shows a potential health hazard of having a high concentration of chlorpyrifos residue in locally grown vegetables.

2.
Foods ; 12(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36613416

ABSTRACT

Food adulteration refers to the alteration of food quality that takes place deliberately. It includes the addition of ingredients to modify different properties of food products for economic advantage. Color, appearance, taste, weight, volume, and shelf life are such food properties. Substitution of food or its nutritional content is also accomplished to spark the apparent quality. Substitution with species, protein content, fat content, or plant ingredients are major forms of food substitution. Origin misrepresentation of food is often practiced to increase the market demand of food. Organic and synthetic compounds are added to ensure a rapid effect on the human body. Adulterated food products are responsible for mild to severe health impacts as well as financial damage. Diarrhea, nausea, allergic reaction, diabetes, cardiovascular disease, etc., are frequently observed illnesses upon consumption of adulterated food. Some adulterants have shown carcinogenic, clastogenic, and genotoxic properties. This review article discusses different forms of food adulteration. The health impacts also have been documented in brief.

3.
Front Chem ; 6: 496, 2018.
Article in English | MEDLINE | ID: mdl-30406079

ABSTRACT

Urinary or serum uric acid concentration is an indicator of chronic kidney condition. An increase in uric acid concentration may indicate renal dysfunction. Reliable instantaneous detection of uric acid without requiring sophisticated laboratory and analytical instrumentation, such as: chromatographic and spectrophotometric methods, would be invaluable for patients with renal complication. This paper reports the early development of a simple, low-cost, instantaneous and user-friendly paper based diagnostic device (PAD) for the qualitative and quantitative detection of uric acid in urine. A colorimetric detection technique was developed based on the intensity of Prussian blue color formation on paper in presence of uric acid; the reaction rate of corresponding chemical reactions on paper surface was also studied. Based on the colorimetric signal produced on paper surface, a calibration curve was developed to detect unknown concentration of uric acid in urine. The effect of temperature on formation of color signal on paper surface was also analyzed. In this study, estimation of urinary uric acid using MATLAB coding on a windows platform was demonstrated as the use of software application and digital diagnostics. This paper-based technique is faster and less expensive compared to traditional detection techniques. The paper-based diagnostic can be integrated with a camera of smart phone, tablet computer or laptop and an image processing application (using windows/android/IOS platform) as a part of digital diagnostics. Therefore, with proper calibration, the paper-based technique can be compatible and economical to the sophisticated detection techniques used to detect urinary uric acid.

4.
Colloids Surf B Biointerfaces ; 132: 264-70, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26052109

ABSTRACT

Viruses cause many infectious diseases and consequently epidemic health threats. Paper based diagnostics and filters can offer attractive options for detecting and deactivating pathogens. However, due to their infectious characteristics, virus detection using paper diagnostics is more challenging compared to the detection of bacteria, enzymes, DNA or antigens. The major objective of this study was to prepare reliable, degradable and low cost paper diagnostics to detect viruses, without using sophisticated optical or microfluidic analytical instruments. T7 bacteriophage was used as a model virus. A paper based sandwich ELISA technique was developed to detect and quantify the T7 phages in solution. The paper based sandwich ELISA detected T7 phage concentrations as low as 100 pfu/mL to as high as 10(9) pfu/mL. The compatibility of paper based sandwich ELISA with the conventional titre count was tested using T7 phage solutions of unknown concentrations. The paper based sandwich ELISA technique is faster and economical compared to the traditional detection techniques. Therefore, with proper calibration and right reagents, and by following the biosafety regulations, the paper based technique can be said to be compatible and economical to the sophisticated laboratory diagnostic techniques applied to detect pathogenic viruses and other microorganisms.


Subject(s)
Bacteriophage T7/isolation & purification , Enzyme-Linked Immunosorbent Assay/methods , Antibodies, Viral/analysis , Bacteriophage T7/immunology , Paper
5.
Anal Chem ; 82(10): 4158-64, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20415489

ABSTRACT

Agglutinated blood transports differently onto paper than stable blood with well dispersed red cells. This difference was investigated to develop instantaneous blood typing tests using specific antibody-antigen interactions to trigger blood agglutination. Two series of experiments were performed. The first related the level of agglutination and the fluidic properties of blood on its transport in paper. Blood samples were mixed at different ratios with specific and nonspecific antibodies; a droplet of each mixture was deposited onto a filter paper strip, and the kinetics of wicking and red cell separation were measured. Agglutinated blood phase separated, with the red blood cells (RBC) forming a distinct spot upon contact with paper while the plasma wicked; in contrast, stable blood suspensions wicked uniformly. The second study analyzed the wicking and the chromatographic separation of droplets of blood deposited onto paper strips pretreated with specific and nonspecific antibodies. Drastic differences in transport occurred. Blood agglutinated by interaction with one of its specific antibodies phase separated, causing a chromatographic separation. The red cells wicked very little while the plasma wicked at a faster rate than the original blood sample. Blood agglutination and wicking in paper followed the concepts of colloids chemistry. The immunoglobin M antibodies agglutinated the red blood cells by polymer bridging, upon selective adsorption on the specific antigen at their surface. The transport kinetics was viscosity controlled, with the viscosity of red cells drastically increasing upon blood agglutination. Three arm prototypes were investigated for single-step blood typing.


Subject(s)
Antigens/immunology , Blood Grouping and Crossmatching/methods , Agglutination , Cell Separation , Erythrocytes
6.
Colloids Surf B Biointerfaces ; 79(1): 88-96, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20417074

ABSTRACT

The effect of polymer on the retention and the thermal stability of bioactive enzymatic papers was measured using a colorimetric technique quantifying the intensity of the enzyme-substrate product complex. Alkaline phosphatase (ALP) was used as model enzyme. Three water soluble polymers: a cationic polyacrylamide (CPAM), an anionic polyacrylic acid (PAA) and a neutral polyethylene oxide (PEO) were selected as retention aids. The model polymers increased the enzyme adsorption on paper by around 50% and prevented enzyme desorption upon rewetting of the papers. The thermal deactivation of ALP retained on paper with polymers follows two sequential first order reactions. This was also observed for ALP simply physisorbed on paper. The retention aid polymers instigated a rapid initial deactivation which significantly decreased the longevity of the enzymatic papers. This suggests some enzyme-polymer interaction probably affecting the enzyme tertiary structure. A deactivation mathematical model predicting the enzymatic paper half-life was developed.


Subject(s)
Enzymes, Immobilized/metabolism , Enzymes/metabolism , Paper , Polymers/metabolism , Acrylic Resins/chemistry , Acrylic Resins/metabolism , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/metabolism , Animals , Anions/chemistry , Cations/chemistry , Cattle , Enzymes/chemistry , Kinetics , Polymers/chemistry , Temperature , Time Factors
7.
Colloids Surf B Biointerfaces ; 75(1): 239-46, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19775873

ABSTRACT

The thermal stability of two enzymes adsorbed on paper, alkaline phosphatase (ALP) and horseradish peroxidase (HRP), was measured using a colorimetric technique quantifying the intensity of the product complex. The enzymes adsorbed on paper retained their functionality and selectivity. Adsorption on paper increased the enzyme thermal stability by 2-3 orders of magnitude compared to the same enzyme in solution. ALP and HRP enzymatic papers had half-lives of 533 h and 239 h at 23 degrees C, respectively. The thermal degradation of adsorbed enzyme was found to follow two sequential first-order reactions, indication of a reaction system. A complex pattern of enzyme was printed on paper using a thermal inkjet printer. Paper and inkjet printing are ideal material and process to manufacture low-cost-high volume bioactive surfaces.


Subject(s)
Alkaline Phosphatase/metabolism , Horseradish Peroxidase/metabolism , Paper , Temperature , Adsorption , Buffers , Calibration , Coloring Agents , Enzyme Activation , Hydrogen-Ion Concentration , Kinetics , Printing , Surface Properties , Time Factors
8.
Colloids Surf B Biointerfaces ; 75(2): 441-7, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-19879112

ABSTRACT

The feasibility of thermal ink jet printing as a robust process for biosurface engineering was demonstrated. The strategy investigated was to reconstruct a commercial printer and take advantage of its colour management interface. High printing resolution was achieved by formulating bio-inks of viscosity and surface tension similar to those of commercial inks. Protein and enzyme denaturation during thermal ink jet printing was shown to be insignificant. This is because the time spent by the biomolecules in the heating zone of the printer is negligible; in addition, the air and substrate of high heat capacity absorb any residual heat from the droplet. Gradients of trophic/tropic factors can serve as driving force for cell growth or migration for tissue regeneration. Concentration gradients of proteins were printed on scaffolds to show the capability of ink jet printing. The printed proteins did not desorb upon prolonged immersion in aqueous solutions, thus allowing printed scaffold to be used under in vitro and in vivo conditions. Our group portrait was ink jet printed with a protein on paper, illustrating that complex biopatterns can be printed on large area. Finally, patterns of enzymes were ink jet printed within the detection and reaction zones of a paper diagnostic.


Subject(s)
Ink , Printing/methods , Tissue Engineering/instrumentation , Tissue Engineering/methods , Animals , Cattle , Color , Fluorescein-5-isothiocyanate , Horseradish Peroxidase/metabolism , Microfluidics , Microscopy, Confocal , Nanofibers/ultrastructure , Paper , Polyesters/chemistry , Serum Albumin, Bovine/metabolism , Surface Tension , Tissue Scaffolds , Viscosity
9.
Langmuir ; 24(7): 3199-204, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18302425

ABSTRACT

The mechanism of the generation and sustainability of noncoalescent droplets (NCDs) was investigated at the liquid-air interface of the same liquids in the context of inkjet printing. The Weber number (We) was used to correlate and predict the generation of NCDs in a falling-drop experiment. This study found that NCDs can be generated for We higher than 130. We values of this magnitude are relevant to inkjet printing. The formation of NCD can reduce the print quality because the NCD droplets roll away uncontrollably from the print target, thus reducing print resolution. This study also used a simple experiment to demonstrate the physical origin of the NCD, which is the existence of a gaseous cushion between the liquid drop and the liquid-air interface that supports the drop. The gaseous cushion has a thickness greater than the van der Waals attraction range (around 10 nm).

SELECTION OF CITATIONS
SEARCH DETAIL
...