Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(7): 8296-8309, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33058076

ABSTRACT

Pesticides are emergent toxins often identified in aquatic environments. In the present study, microplasma was employed to reduce the pesticide content in water. The degradation efficacy, rate, and pathways of standard organophosphorus pesticides (namely, chlorpyrifos, chlorpyrifos oxone, and diazinone) and an organochlorine pesticide (namely, DDT solution) were evaluated using microplasma. High-performance liquid chromatography (HPLC) analysis was performed to elucidate the degradation efficiency of pesticides as a function of plasma-produced substances that originally contributed to the main reduction procedure. Microplasma produces several types of radicals or reactive substances, for instance dissolved ozone (O3), nitrogen oxides, hydroxyl radicals (OH radicals), and hydrogen peroxide (H2O2). The removal potential differs due to the existence or absence of varieties of plasma-produced substances. The functions of major plasma-produced species on pesticide removal were determined by a passive technique. Nitrogen oxides showed a key role in organophosphorus pesticide removal, whereas dissolved ozone and OH radicals played major roles in DDT degradation. HPLC data showed that plasma-induced pesticide removal showed first-order reaction kinetics. The pesticide removal pathways through microplasma were validated by investigating the achieved data from LC-MS and GC-MS.


Subject(s)
Ozone , Pesticides , Water Pollutants, Chemical , Water Purification , Hydrogen Peroxide , Hydroxyl Radical , Oxidation-Reduction , Water
2.
J Sep Sci ; 43(21): 4047-4057, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32875636

ABSTRACT

The degradation of two organophosphates, chlorpyrifos and diazinon, in water using microplasma equipment to produce ozone and the identification of their products were studied by using liquid chromatography-mass spectrometry. The organophosphates gradually decreased with time and were completely removed after 10 min, and diazinon was degraded at a relatively fast rate compared to chlorpyrifos. The products formed during the process were identified and determined with accurate mass measurements and tandem mass spectrometry spectra, providing reliable structural determination. Chlorpyrifos oxon was formed through the oxidation of chlorpyrifos, followed by the formation of 3,5,6-trichloro-2-pyridinol and diethyl phosphate by hydrolysis. Diazinon formed various products through more complicated degradation processes than those of chlorpyrifos. The major products of diazinon degradation were 2-isopropyl-6-methyl-4-pyrimidinol and diethyl phosphate by hydrolysis after oxidation, exhibiting diazoxon as an intermediate at trace levels. Direct hydrolysis of diazinon also occurred, producing diethyl thiophosphate, which was observed at a low concentration for a transient time and exhibited a less favorable process than sequential oxidation and hydrolysis. The other products, hydroxy diazinons and hydroxy-2-isopropyl-6-methyl-4-pyrimidinols, formed by hydroxylation, were also identified, but they were present in low amounts. Degradation mechanisms of chlorpyrifos and diazinon were proposed with the quantitatively evaluated products.

3.
Sci Rep ; 10(1): 2368, 2020 02 11.
Article in English | MEDLINE | ID: mdl-32047250

ABSTRACT

The demand for rapid, consistent and easy-to-use techniques for detecting and identifying pathogens in various areas, such as clinical diagnosis, the pharmaceutical industry, environmental science and food inspection, is very important. In this study, the reference strains of six food-borne pathogens, namely, Escherichia coli 0157: H7 ATCC 43890, Cronobacter sakazakii ATCC 29004, Salmonella Typhimurium ATCC 43971, Staphylococcus aureus KCCM 40050, Bacillus subtilis ATCC 14579, and Listeria monocytogenes ATCC 19115, were chosen for scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. In our study, the time-consuming sample preparation step for the microbial analysis under SEM was avoided, which makes this detection process notably rapid. Samples were loaded onto a 0.01-µm-thick silver (Ag) foil surface to avoid any charging effect. Two different excitation voltages, 10 kV and 5 kV, were used to determine the elemental information. Information obtained from SEM-EDX can distinguish individual single cells and detect viable and nonviable microorganisms. This work demonstrates that the combination of morphological and elemental information obtained from SEM-EDX analysis with the help of principal component analysis (PCA) enables the rapid identification of single microbial cells without following time-consuming microbiological cultivation methods.


Subject(s)
Bacteria/ultrastructure , Electron Probe Microanalysis/methods , Microscopy, Electron, Scanning/methods , Single-Cell Analysis/methods
4.
Sci Rep ; 8(1): 16872, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30443039

ABSTRACT

This study was performed to assess the effect of plasma-discharged water recycling technology as irrigation water on soybean sprout production. Two different types of irrigation water were used individually for cultivation, including plasma discharged water as a source of oxides of nitrogen and tap water, irrigation water was recycled for every 30 minutes. Plasma discharged irrigation water reduced overall 4.3 log CFU/ml aerobic microbe and 7.0 log CFU/ml of artificially inoculated S. Typhimurium within 5 minutes and 2 minutes, respectively, therefore sprout production occurs in a hygienic environment. Using of plasma-discharged water for cultivation, increases the amount of ascorbate, asparagine, and γ-aminobutyric acid (GABA) significantly (p < 0.05), in the part of cotyledon and hypocotyl of soybean sprout during 1 to 4 days of farming. A NO scavenger, 2-(4-carboxy-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxy-3-oxide (cPTIO), was added in irrigation water to elucidate the roles of the oxides of nitrogen such as NO3-, NO2- generated in plasma discharged water. It was observed that all three nutrients decreased in the cotyledon part, whereas ascorbate and GABA contents increased in the hypocotyl and radicle part of bean sprout for the same duration of farming. The addition of NO scavenger in the irrigation water also reduced growth and overall yield of the soybean sprouts. A recycling water system with plasma-discharged water helped to reduce the amount of water consumption and allowed soybean sprouts growth in a hygienic environment during the hydroponic production.


Subject(s)
Glycine max/growth & development , Hydroponics , Nitrogen/pharmacology , Oxides/pharmacology , Plasma Gases/chemistry , Recycling , Water , Agricultural Irrigation , Ascorbic Acid/analysis , Asparagine/analysis , Electricity , Electrodes , Free Radicals/analysis , Microbial Viability/drug effects , Glycine max/drug effects , gamma-Aminobutyric Acid/analysis
5.
Sci Rep ; 8(1): 6227, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29654305

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 7(1): 17728, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29255234

ABSTRACT

A submerged dielectric barrier discharge (DBD) plasma reactor was used to inactivate artificially inoculated reference strains of Salmonella Typhimurium ATCC 14028 on sliced onion (3 cm × 3 cm). Salmonella Typhimurium reductions obtained after 10 min of treatment were 3.96 log CFU/slice and 1.64 log CFU/slice for clean dry air and N2 feed gas, respectively. Variations observed in Optical Emission Spectra (OES) for different feed gases are responsible for the inactivation level variations of Salmonella Typhimurium. The physiochemical properties of the onion slices, such as quercetin content, ascorbic acid content and color parameters, were monitored before and after treatment and the changes that occurred were measured to be in the acceptable range. Quercetin content was reduced only 3.74-5.07% for 10 min treatment, higher reduction was obtained for the use of clean dry air than that of N2 feed gas. Ascorbic acid loss was measured to be 11.82% and 7.98% for a 10 min treatment with clean dry air and N2 feed gas, respectively. The color parameters did not show significant changes upon treatment (p > 0.05) of the same duration for the uses of different feed gases.


Subject(s)
Food Handling/methods , Onions/microbiology , Salmonella typhimurium/drug effects , Colony Count, Microbial/methods , Food Contamination/analysis , Food Microbiology/methods , Food Preservation/methods , Gases/chemistry , Onions/metabolism , Photoelectron Spectroscopy/methods , Plasma Gases/chemistry , Quercetin/analysis , Salmonella typhimurium/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...