Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag Res ; 40(12): 1708-1729, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35719093

ABSTRACT

With the huge generation of municipal solid waste (MSW), proper management and disposal of MSW is a worldwide challenge for sustainable development of cities and high quality of citizens life. Although different disposal ways are available, incineration is a leading harmless approach to effectively recover energy among the applied technologies. The purpose of the present review paper is to detail the discussion of evolution of waste to energy incineration and specifically to highlight the currently used and advanced incineration technologies, including combined incineration with other energy, for instance, hydrogen production, coal and solar energy. In addition, the environmental performance is discussed, including the zero waste emission, leachate and fly ash treatment, climate change contribution and public behaviour. Finally, challenges, opportunities and business model are addressed. Trends and perspectives on policies and techno-economic aspects are also discussed in this review. Different simulation tools, which can be used for the thermodynamic assessment of incineration plants, are debated; life-cycle inventory emissions and most critical environmental impacts of such plants are evaluated by life-cycle analysis. This review shows that waste incineration with energy yield is advantageous to handle waste problems and it affects climate change positively.


Subject(s)
Incineration , Refuse Disposal , Solid Waste/analysis , Coal Ash/analysis , Climate Change , Coal , Hydrogen
2.
Environ Pollut ; 268(Pt A): 115329, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33137681

ABSTRACT

Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) emission is one of main concerns for the secondary pollution of municipal solid waste incinerators (MSWI). For timely response to emission, 1,2,4-trichlorobenzene (1,2,4-TrClBz) as dioxin indicator can be monitored via online measurement techniques. In this study, multi-walled carbon nanotubes (MWCNTs) were investigated for their suitability as a 1,2,4-TrClBz sorbent for MSWI stack gas analysis. The tests include, batch adsorption, continuous adsorption-desorption of 1,2,4-TrClBz via thermal desorption coupled with gas chromatography (TD-GC-ECD), temperature and concentration stability of MWCNTs, and adsorption performance of the system. Thermogravimetric/derivative thermogravimetric (TGA/DTG) analysis reveals that MWCNTs has higher capacity in terms of weight loss (14.34%) to adsorb 1,2,4-TrClBz compared to Tenax TA (9.46%) and also shows fast desorption of adsorbate at temperature of 87 °C compared to Tenax TA (130 °C). Interestingly, carbon nanotubes and Tenax TA gave almost similar adsorption-desorption response, and from TD-GC-ECD analysis it was found that with increasing mass flow of 1,2,4-TrClBz (7.42 × 10-6 - 44.52 × 10-6 mg ml-1) through sorbent traps, average peak areas increased from 2.86 ± 0.02 to 13.54 ± 0.26 for MWCNTs and 2.89 ± 0.02 to 13.38 ± 0.12 for Tenax TA, respectively. The stability of MWCNTs for temperature was 400 °C and for concentration of 1,2,4-TrClBz was 50 ppbv. However, regeneration of sorbent at 100 ppbv (1,2,4-TrClBz) was not possible. TD-GC-ECD system showed high adsorption performance with 3.86% and 3.59% relative standard deviation at 250 °C and 300 °C, respectively. Further Fourier Transform Infrared Spectroscopy (FTIR) analysis confirmed that adsorbate can be fully desorbed at 300 °C.


Subject(s)
Dioxins , Nanotubes, Carbon , Polychlorinated Dibenzodioxins , Adsorption , Chlorobenzenes , Incineration
3.
Pak J Pharm Sci ; 30(1): 195-198, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28603131

ABSTRACT

The antipyretic effect of the aqueous extract of herbal coded formulation containing equal amount of Salix alba, Emblica officinalis, Glycyrrhiza glabra, Adhatoda vasica, Viola odorata, Thea sinensis, Veleriana officinalis, Foeniculum vulgare, Sisymbrium irrio and Achillea millefolium was investigated using the yeast induced pyrexia model in rabbits. Paracetamol was used as a control group. Rectal temperatures of all rabbits were recorded immediately before the administration of the extract or paracetamol and again at 1 hour, after this, temperature was noted at 1 hrs interval for 5 hrs using digital thermometer. At 240mg/kg dose the extract showed significant reduction in yeast-induced elevated temperature as compared with that of standard drug paracetamol (150mg/kg). It is concluded that herbal coded medicine at a dose of 240mg/kg has marked antipyretic activity in animal models and this strongly supports the ethno pharmacological uses of medicinal plants of this formulation.


Subject(s)
Antipyretics/pharmacology , Body Temperature Regulation/drug effects , Fever/prevention & control , Plant Extracts/pharmacology , Acetaminophen/pharmacology , Animals , Antipyretics/isolation & purification , Antipyretics/toxicity , Disease Models, Animal , Female , Fever/microbiology , Fever/physiopathology , Lethal Dose 50 , Male , Phytotherapy , Plant Extracts/isolation & purification , Plant Extracts/toxicity , Plants, Medicinal , Rabbits , Time Factors , Yeasts
SELECTION OF CITATIONS
SEARCH DETAIL
...