Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Neurospine ; 20(3): 783-789, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37798970

ABSTRACT

OBJECTIVE: We aim to compare the effectiveness of dural closure techniques in preventing cerebrospinal fluid (CSF) leaks following surgery for intradural lesions and seek to identify additional factors associated with CSF leaks. Surgical management of spinal intradural lesions involves durotomy which requires a robust repair to prevent postoperative CSF leakage. The ideal method of dural closure and the efficacy of sealants has not been established in literature. METHODS: We performed a retrospective analysis of all intradural spinal cases performed at a tertiary spine centre from 1 April 2015 to 29 January 2020 and collected data on patient bio-profile, dural repair technique, and CSF leak rates. Multivariate analysis was performed to identify predictors for postoperative CSF leak. RESULTS: A total of 169 cases were reported during the study period. There were 15 cases in which postoperative CSF leak was reported (8.87%). Multivariate analysis demonstrated that patient age (odds ratio [OR], 0.942; 95% confidence interval [CI], 0.891-0.996), surgical indication listed in the "others" category (OR, 44.608; 95% CI, 1.706-166.290) and dural closure with suture, sealant and patch (OR, 22.235; 95% CI, 2.578-191.798) were factors associated with CSF leak. Postoperative CSF leak was associated with the risk of surgical site infection with a likelihood ratio of 8.704 (χ² (1) = 14.633, p < 0.001). CONCLUSION: Identifying predictors for CSF leaks can assist in the counselling of patients with regard to surgical risk and expected postoperative recovery.

2.
Microb Pathog ; 183: 106290, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567325

ABSTRACT

Recent advancements in specific strain of probiotics have shown promising trends and applications in both ruminant and non-ruminant animal health. This study emphasizes the importance of tailored probiotics for these animal categories, discussing their potential benefits in improving nutrient utilization, growth performance, and disease management. The study also explores the different routes of probiotics administration, highlighting the various methods of delivery. Specifically, it highlights the benefits of probiotics in ruminant production performance, including enhanced rumen health, growth rates, milk production, and reduced digestive disorders. Additionally, it discusses the advantages of probiotics in non-ruminant farming, such as improved feed conversion efficiency, nutrient absorption, growth rates, immune responses, and reduced gastrointestinal issues, leading to increased productivity and profitability. In conclusion, recent advancements in specific strain of probiotics offer promising prospects for improving animal health. Tailored probiotics have shown potential in enhancing growth, nutrient utilization, and disease prevention, contributing to sustainable and effective animal husbandry practices.


Subject(s)
Probiotics , Animals , Ruminants , Rumen , Animal Feed
3.
Small ; 19(20): e2206293, 2023 May.
Article in English | MEDLINE | ID: mdl-36755353

ABSTRACT

Efficient charge-carrier separation and their utilization are the key factors in overcoming sluggish four-electron reaction kinetics involved in photocatalytic oxygen evolution. Here, a novel study demonstrates the significance of Na2 S2 O8 as a sacrificial agent in comparison to AgNO3 . Resultantly, BiFeO3 (BFO) and titanium doped-oxygen deficient BiFeO3 (Ti-BFO-R) nanostructures achieve ≈64 and 44.5 times higher O2 evolution in the presence of Na2 S2 O8 compared to AgNO3 as a sacrificial agent, respectively. Furthermore, the presence of Co single atoms (Co-SAs) deposited via immersion method on BFO and Ti-BFO-R nanostructures led to achieving outstanding O2 evolution at a rate of 16.11 and 23.89 mmol g-1 h-1 , respectively, which is 153 and 227.5 times higher compared to BFO (in the presence of AgNO3 ), the highest O2 evolution observed for BFO-based materials to date. The successful deposition of Co-SAs is confirmed by aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and X-ray absorption near-edge structure (XANES). The charge transfer investigations confirm the significance of Co-SAs on BFO-based photocatalysts for improved charge-carrier separation, transport, and utilization. This novel study validates the excellent role of Na2 S2 O8 as a sacrificial agent and Co-SAs as a cocatalyst for BFO-based nanostructures for efficient O2 evolution.

4.
Biomed Res Int ; 2022: 7669255, 2022.
Article in English | MEDLINE | ID: mdl-36158895

ABSTRACT

Objective: This project was aimed at formulating a novel nanoemulsion system and evaluating it for open incision wound healing in diabetic animals. Methods: The nanoemulsions were characterized for droplet size and surface charge, drug content, antioxidant and antimicrobial profiling, and wound healing potential in diabetic animals. The skin samples excised were also analyzed for histology, mechanical strength, and vibrational and thermal analysis. Results: The optimized nanoemulsion (CR-NE-II) exhibited droplet size of26.76 ± 0.9 nm with negative surface charge (-10.86 ± 1.06 mV), was homogenously dispersed with drug content of68.05 ± 1.2%, released almost82.95 ± 2.2%of the drug within first 2 h of experiment with synergistic antioxidant (95 ± 2.1%) and synergistic antimicrobial activity against selected bacterial strains in comparison to blank nanoemulsion, and promoted significantly fast percent reepithelization (96.47%). The histological, vibrational, thermal, and strength analysis of selected skin samples depicted a uniform and even distribution of collagen fibers which translated into significant increase in strength of skin samples in comparison to the control group. Conclusions: The optimized nanoemulsion system significantly downregulated the oxidative stress, enhanced collagen deposition, and precluded bacterial contamination of wound, thus accelerating the skin tissue regeneration process.


Subject(s)
Curcumin , Diabetes Mellitus , Animals , Antioxidants/pharmacology , Collagen , Emulsions , Wound Healing , alpha-Tocopherol/pharmacology
5.
Polymers (Basel) ; 14(11)2022 May 26.
Article in English | MEDLINE | ID: mdl-35683835

ABSTRACT

Polymers are long-chain, highly molecular weight molecules containing large numbers of repeating units within their backbone derived from the product of polymerization of monomeric units. The materials exhibit unique properties based on the types of bonds that exist within their structures. Among these, some behave as rubbers because of their excellent bending ability, lightweight nature, and shape memory. Moreover, their tunable chemical, structural, and electrical properties make them promising candidates for their use as sensing materials. Polymer-based sensors are highly utilized in the current scenario in the public health sector and environment control due to their rapid detection, small size, high sensitivity, and suitability in atmospheric conditions. Therefore, the aim of this review article is to highlight the current progress in polymer-based sensors. More importantly, this review provides general trends and challenges in sensor technology based on polymer materials.

6.
Polymers (Basel) ; 14(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35683883

ABSTRACT

The present study aimed to prepare methotrexate-loaded transdermal patches with different blends of hydrophobic and hydrophilic polymers (Eudragit S-100 and hydroxypropyl methylcellulose) at different concentrations. The polymers employed in transdermal patches formulations served as controlled agent. Transdermal patches were prepared using the solvent casting technique. The suitable physicochemical properties were obtained from the formulation F5 (HPMC and Eudragit S-100 (5:1). Various penetration enhancers were employed in different concentrations to investigate their potential for enhancing the drug permeation profile from optimized formulations. A preformulation study was conducted to investigate drug-excipient compatibilities (ATR-FTIR) and the study showed greater compatibility between drug, polymers and excipients. The prepared patches containing different penetration enhancers at different concentrations were subjected for evaluating different physicochemical parameters and in vitro drug release studies. The obtained data were added to various kinetic models, then formulated patch formulations were investigated for ex vivo permeation studies, in vivo studies and skin drug retention studies. The prepared patches showed elastic, smooth and clear nature with good thickness, drug content, % moisture uptake and weight uniformity. The prepared transdermal patches showed % drug content ranging from 91.43 ± 2.90 to 98.37 ± 0.56, % swelling index from 36.98 ± 0.19 to 75.32 ± 1.21, folding endurance from 61 ± 3.14 to 78 ± 1.54 and tensile strength from 8.54 ± 0.18 to 12.87 ± 0.50. The formulation F5, containing a greater amount of hydrophilic polymers (HPMC), showed increased drug release and permeation and drug retention when compared to other formulated transdermal patch formulations (F1-F9). No significant change was observed during a stability study for a period of 60 days. The rabbit skin samples were subjected to ATR-FTIR studies, which revealed that polymers and penetration enhancers have affected skin proteins (ceramides and keratins). The pharmacokinetic profiling of optimized formulation (F5) as well as formulations with optimized concentrations of penetration enhancers revealed Cmax ranged 167.80 ng/mL to 178.07 ± 2.75 ng/mL, Tmax was 8 h to 10 h, and t1/2 was 15.9 ± 2.11 to 21.49 ± 1.16. From the in vivo studies, it was revealed that the formulation F5-OA-10% exhibited greater skin drug retention as compared to other formulations. These results depicted that prepared methotrexate transdermal patches containing different blends of hydrophobic and hydrophilic polymers along with different penetration enhancers could be safely used for the management of psoriasis. The formulated transdermal patches exhibited sustained release of drug with good permeations and retention profile. Hence, these formulated transdermal patches can effectively be used for the management of psoriasis.

7.
Membranes (Basel) ; 12(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35736262

ABSTRACT

Atmospheric pollution has become a critical problem for modern society; therefore, the research in this area continually aims to develop a high-performance gas sensor for health care and environmental safety. Researchers have made a significant contribution in this field by developing highly sensitive sensor-based novel selective materials. The aim of this article is to review recent developments and progress in the selective and sensitive detection of environmentally toxic gases. Different classifications of gas sensor devices are discussed based on their structure, the materials used, and their properties. The mechanisms of the sensing devices, identified by measuring the change in physical property using adsorption/desorption processes as well as chemical reactions on the gas-sensitive material surface, are also discussed. Additionally, the article presents a comprehensive review of the different morphologies and dimensions of mixed heterostructure, multilayered heterostructure, composite, core-shell, hollow heterostructure, and decorated heterostructure, which tune the gas-sensing properties towards hazardous gases. The article investigates in detail the growth and interface properties, concentrating on the material configurations that could be employed to prepare nanomaterials for commercial gas-sensing devices.

8.
Polymers (Basel) ; 14(9)2022 Apr 29.
Article in English | MEDLINE | ID: mdl-35566995

ABSTRACT

The current study aims to synthesize bimetal oxide nanoparticles (zinc and manganese ions) using the carica papaya leaf extract. The crystallite size of the nanoparticle from X-ray diffraction method was found to be 19.23 nm. The nanosheet morphology was established from Scanning Electron Microscopy. Energy-dispersive X-ray diffraction was used to determine the elemental content of the synthesized material. The atomic percentage of Mn and Zn was found to be 15.13 and 26.63. The weight percentage of Mn and Zn was found to be 7.08 and 10.40. From dynamic light scattering analysis, the hydrodynamic diameter and zeta potential was found to be 135.1 nm and -33.36 eV. The 1,1-diphenyl-2-picryl hydroxyl radical, hydroxyl radical, FRAP, and hydrogen peroxide scavenging tests were used to investigate the antioxidant activity of Mn-Zn NPs. Mn-Zn NPs have substantial antioxidant properties. The photocatalytic activity of the Mn-Zn NPs was assessed by their ability to degrade Erichrome black T (87.67%), methyl red dye (78.54%), and methyl orange dye (69.79%). Additionally, it had significant antimicrobial action S. typhi showed a higher zone of inhibition 14.3 ± 0.64 mm. Mn-Zn nanoparticles were utilized as a catalyst for p-nitrophenol reduction. The bimetal oxide Mn-Zn NPs synthesized using C. papaya leaf extract exhibited promising dye degradation activity in wastewater treatment. Thus, the aforementioned approach will be a novel, low cost and ecofriendly approach.

9.
Gels ; 8(5)2022 May 16.
Article in English | MEDLINE | ID: mdl-35621603

ABSTRACT

ZnFe2O4 as an anode that is believed to attractive. Due to its large theoretical capacity, this electrode is ideal for Lithium-ion batteries. However, the performance of ZnFe2O4 while charging and discharging is limited by its volume growth. In the present study, carbon-coated ZnFe2O4 is synthesized by the sol-gel method. Carbon is coated on the spherical surface of ZnFe2O4 by in situ coating. In situ carbon coating alleviates volume expansion during electrochemical performance and Lithium-ion mobility is accelerated, and electron transit is accelerated; thus, carbon-coated ZnFe2O4 show good electrochemical performance. After 50 cycles at a current density of 0.1 A·g-1, the battery had a discharge capacity of 1312 mAh·g-1 and a capacity of roughly 1220 mAh·g-1. The performance of carbon-coated ZnFe2O4 as an improved anode is electrochemically used for Li-ion energy storage applications.

10.
ACS Appl Mater Interfaces ; 13(1): 1783-1790, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33347270

ABSTRACT

Artificial materials in the form of superlattices have been studied actively in quest of new engineering methods or design rules for the development of desired functionalities, in particular high-k ferroelectricity, ferromagnetism, and high mobility electron gas. This work presents a controlled assembly strategy for fabricating atomically precise interfaces of two-dimensional (2D) homologous perovskite nanosheets (Ca2Nam-3NbmO3m+1-; m = 3-6) to construct artificial superlattices. The distinctive thickness of each 2D homologous perovskite nanosheets attributed to the presence of different number of NbO6 octahedra provides an exquisite control to engineer interfacial properties for tailored design of superior high-k properties and emergence of ferroelectricity. The higher dielectric constant (εr = 427) and development of ferroelectricity for (Ca2Nb3O10-/Ca2Na2Nb5O16-)6 superlattice indicate that superlattice films with both odd number of NbO6 octahedra possess extended polarization due to the potential effect of heterointerface and ferroelectric instabilities. Furthermore, the increased discontinuities/offsets in Ca2Nb3O10- and Ca2Na3Nb6O19- nanosheets band alignment results in superior insulating properties (∼1 × 10-11 A cm-2 at 1 V) for (Ca2Nb3O10-/Ca2Na3Nb6O19-)6 superlattice. These findings exhibit new research opportunities for the development of novel artificial high-k dielectric/ferroelectric via precise control of interfaces at the atomic level and can be extended to the large family of 2D perovskite compounds.

11.
Small ; 16(39): e2003485, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32851769

ABSTRACT

Large size of capacitors is the main hurdle in miniaturization of current electronic devices. Herein, a scalable solution-based layer-by-layer engineering of metallic and high-κ dielectric nanosheets into multilayer nanosheet capacitors (MNCs) with overall thickness of ≈20 nm is presented. The MNCs are built through neat tiling of 2D metallic Ru0.95 O2 0.2- and high-κ dielectric Ca2 NaNb4 O13 - nanosheets via the Langmuir-Blodgett (LB) approach at room temperature which is verified by cross-sectional high-resolution transmission electron microscopy (HRTEM). The resultant MNCs demonstrate a high capacitance of 40-52 µF cm-2 and low leakage currents down to 10-5 -10-6 A cm-2 . Such MNCs also possess complimentary in situ robust dielectric properties under high-temperature measurements up to 250 °C. Based on capacitance normalized by the thickness, the developed MNC outperforms state-of-the-art multilayer ceramic capacitors (MLCC, ≈22 µF cm-2 /5 × 104  nm) present in the market. The strategy is effective due to the advantages of facile, economical, and ambient temperature solution assembly.

12.
JMIR Res Protoc ; 9(6): e15922, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32525490

ABSTRACT

BACKGROUND: Degenerative cervical myelopathy (DCM) is widely accepted as the most common cause of adult myelopathy worldwide. Despite this, there is no specific term or diagnostic criteria in the International Classification of Diseases 11th Revision and no Medical Subject Headings (MeSH) or an equivalent in common literature databases. This makes searching the literature and thus conducting systematic reviews or meta-analyses imprecise and inefficient. Efficient research synthesis is integral to delivering evidence-based medicine and improving research efficiency. OBJECTIVE: This study aimed to illustrate the difficulties encountered when attempting to carry out a comprehensive and accurate evidence search in the field of DCM by identifying the key sources of imprecision and quantifying their impact. METHODS: To identify the key sources of imprecision and quantify their impact, an illustrative search strategy was developed using a validated DCM hedge combined with contemporary strategies used by authors in previous systematic reviews and meta-analyses. This strategy was applied to Medical Literature Analysis and Retrieval System Online (MEDLINE) and Excerpta Medica dataBASE (EMBASE) databases looking for relevant DCM systematic reviews and meta-analyses published within the last 5 years. RESULTS: The MEDLINE via PubMed search strategy returned 24,166 results, refined to 534 papers after the application of inclusion and exclusion criteria. Of these, 32.96% (176/534) results were about DCM, and 18.16% (97/534) of these were DCM systematic reviews or meta-analyses. Non-DCM results were organized into imprecision categories (spinal: 268/534, 50.2%; nonspinal: 84/534, 15.5%; and nonhuman: 8/534, 1.5%). The largest categories were spinal cord injury (75/534, 13.67%), spinal neoplasms (44/534, 8.24%), infectious diseases of the spine and central nervous system (18/534, 3.37%), and other spinal levels (ie, thoracic, lumbar, and sacral; 18/534, 3.37%). Counterintuitively, the use of human and adult PubMed filters was found to exclude a large number of relevant articles. Searching a second database (EMBASE) added an extra 12 DCM systematic reviews or meta-analyses. CONCLUSIONS: DCM search strategies face significant imprecision, principally because of overlapping and heterogenous search terms, and inaccurate article indexing. Notably, commonly employed MEDLINE filters, human and adult, reduced search sensitivity, whereas the related articles function and the use of a second database (EMBASE) improved it. Development of a MeSH labeling and a standardized DCM definition would allow comprehensive and specific indexing of DCM literature. This is required to support a more efficient research synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...