Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36676258

ABSTRACT

The presence of dyes in water stream is a major environmental problem that affects aquatic and human life negatively. Therefore, it is essential to remove dye from wastewater before its discharge into the water bodies. In this study, Banyan (Ficus benghalensis, F. benghalensis) tree leaves, a low-cost biosorbent, were used to remove brilliant green (BG), a cationic dye, from an aqueous solution. Batch model experiments were carried out by varying operational parameters, such as initial concentration of dye solution, contact time, adsorbent dose, and pH of the solution, to obtain optimum conditions for removing BG dye. Under optimum conditions, maximum percent removal of 97.3% and adsorption capacity (Qe) value of 19.5 mg/g were achieved (at pH 8, adsorbent dose 0.05 g, dye concentration 50 ppm, and 60 min contact time). The Langmuir and Freundlich adsorption isotherms were applied to the experimental data. The linear fit value, R2 of Freundlich adsorption isotherm, was 0.93, indicating its best fit to our experimental data. A kinetic study was also carried out by implementing the pseudo-first-order and pseudo-second-order kinetic models. The adsorption of BG on the selected biosorbent follows pseudo-second-order kinetics (R2 = 0.99), indicating that transfer of internal and external mass co-occurs. This study surfaces the excellent adsorption capacity of Banyan tree leaves to remove cationic BG dye from aqueous solutions, including tap water, river water, and filtered river water. Therefore, the selected biosorbent is a cost-effective and easily accessible approach for removing toxic dyes from industrial effluents and wastewater.

2.
Polymers (Basel) ; 14(2)2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35054647

ABSTRACT

The current research focused on the super capacitive behavior of organic conducting polymer, i.e., polypyrrole (PPy) and its composites with gum arabic (GA) prepared via inverse emulsion polymerization. The synthesized composites material was analyzed by different analytical techniques, such as UV-visible, FTIR, TGA, XRD, and SEM. The UV-Vis and FTIR spectroscopy clearly show the successful insertion of GA into PPy matrix. The TGA analysis shows high thermal stability for composites than pure PPy. The XRD and SEM analysis show the crystalline and amorphous structures and overall morphology of the composites is more compact and mesoporous as compared to the pure PPy. The electrochemical properties of modified solid state supercapacitors established on pure polypyrrole (PPy), polypyrrole/gum arabic (PPy/GA) based composites were investigated through cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge (GCD). The specific capacitance of the PPy modified gold electrode is impressive (~168 F/g). The specific capacitance of PPy/GA 1 electrode has been increased to 368 F/g with a high energy density and power density (~73 Wh/kg), and (~599 W/kg) respectively.

3.
Polymers (Basel) ; 13(22)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34833345

ABSTRACT

An in-situ chemical oxidative method was used to effectively synthesize a promising supercapacitor material based on PPy/ZrO2 composites. The synthesized materials were characterized by different analytical techniques, such as UV/visible (UV/Vis) spectroscopy, Fourier-transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The inclusion of ZrO2 into the PPy matrix was verified by vibrational spectra and structural analyses. The (TGA) results showed that incorporating ZrO2 into the polymeric matrix improved its thermal stability. In addition, the electrochemical properties of the synthesizedmaterials were investigated byusing cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD). The PPy/ZrO2 composite demonstrated excellent super capacitive performance, and high specific capacity of 337.83 F/g, with an exceedingly high energy density of 187.68 Wh/kg at a power density of 1000 W/kg. The composite materials maintain good stability after 1000 charge and discharge cycles, with 85% capacitance retention. The PPy/ZrO2 possesses a high capacitance, an attractive micro-morphology, and a simple synthesis method. The findings indicate that the PPy/ZrO2 composite could be a promising electrode material for high-performance supercapacitor applications.

4.
Nanomaterials (Basel) ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34685066

ABSTRACT

Partially biodegradable polymer nanocomposites Poly(3-Hydroxybutyrate) (PHB)/MultiwalledCarbon Nanotubes (MWCNTs)/Poly(Methyl Methacrylate) (PMMA)and non-biodegradable nanocomposites (MWCNTs/PMMA) were synthesized, and their thermal, electrical, and ammonia-sensing properties were compared. MWCNTs were chemically modified to ensure effective dispersion in the polymeric matrix. Pristine MWCNTs (p-MWCNTs) were functionalized with -COOH (a-MWCNTs) and amine groups (f-MWCNTs). Then, PHB grafted multiwalled carbon nanotubes (g-MWNTs) were prepared by a 'grafting to' technique. The p-MWCNTs, a-MWCNTs, f-MWCNTs, and g-MWCNTs were incorporated into the PMMA matrix and PMMA/PHB blend system by solution mixing. The PHB/f-MWCNTs/PMMA blend system showed good thermal properties among all synthesized nanocomposites. Results from TGA and dTGA analysis for PHB/f-MWCNTs/PMMA showed delay in T5 (about 127 °C), T50 (up to 126 °C), and Tmax (up to 65 °C) as compared to neat PMMA. Higher values of frequency capacitance were observed in nanocomposites containing f-MWCNTs and g-MWCNTs as compared to nanocomposites containing p-MWCNTs and a-MWCNTs. This may be attributed to their excellent interaction and good dispersion in the polymeric blend. Analysis of ammonia gas-sensing data showed that PHB/g-MWCNTs/PMMA nanocomposites exhibited good sensitivity (≈100%) and excellent repeatability with a constant response. The calculated limit of detection (LOD) is 0.129 ppm for PHB/g-MWCNTs/PMMA, while that of all other nanocomposites is above 40 ppm.

5.
Molecules ; 26(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198921

ABSTRACT

Electrocatalytic materials offer numerous benefits due to their wide range of applications. In this study, a polyol technique was used to synthesize PdNi nanoparticles (NPs) with different percent atomic compositions (Pd = 50 to 90%) to explore their catalytic efficiency. The produced nanoparticles were characterized using X-ray diffraction (XRD) and electrochemical investigations. According to XRD measurements, the synthesized NPs were crystalline in nature, with crystallite sizes of about 2 nm. The electrochemical properties of the synthesized NPs were studied in alkaline solution through a rotating ring-disk electrode (RRDE) technique of cyclic voltammetry. The PdNi nanoparticles supported on carbon (PdNi/C) were used as electrocatalysts and their activity and stability were compared with the homemade Pd/C and Pt/C. In alkaline solution, PdNi/C electrocatalysts showed improved oxygen reduction catalytic activity over benchmark Pd/C and Pt/C electrocatalysts in all composition ratios. Furthermore, stability experiments revealed that PdNi 50:50 is more stable in alkaline solution than pure Pd and other PdNi compositions.

6.
Polymers (Basel) ; 14(1)2021 Dec 21.
Article in English | MEDLINE | ID: mdl-35012027

ABSTRACT

The present study is aimed at the synthesis and exploring the efficiency of a novel activated carbon incorporated polyindole (AC@PIN) composite for adsorptive removal of Malachite Green (MG) dye from aqueous solution. An AC@PIN hybrid material was prepared by in situ chemical oxidative polymerization. The physico-chemical characteristics of the AC@PIN composite were assessed using Fourier-transform infrared spectrometer, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet visible spectroscopy, and determination of point of zero charge (pHPZC). A series of adsorption studies was conducted to evaluate the influence of operational parameters such as pH, contact time, initial dye concentration, AC@PIN dosage, and temperature on dye adsorption behavior of developed composite. A maximum dye removal percentage (97.3%) was achieved at the pH = 10, AC@PIN dosage = 6.0 mg, initial dye concentration 150 mg L-1, and temperature = 20 °C. The kinetic studies demonstrated that the adsorption of MG on AC@PIN followed pseudo-second-order model (R2 ≥ 0.99). Meanwhile, Langmuir isotherm model was founded to be the best isotherm model to describe the adsorption process. Finally, the recyclability test revealed that the composite exhibits good recycle efficiency and is stable after 5 cycles. The obtained results suggest that AC@PIN composite could be a potential candidate for the removal of MG from wastewater.

7.
Chemosphere ; 225: 785-795, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30903852

ABSTRACT

The study aimed to assess the physicochemical parameters (pH, electrical conductivity (EC), total dissolve solid (TDS), oxidation reduction potential (ORP), Temperature) and potential toxic metals (PTMs), including Ni, Mn, Cr, Cu, Cd, Pb, Co, Fe and Zn in the groundwater of Lower Dir, Pakistan. Furthermore, the pollution sources and spatial distribution pattern of PTMs were also investigated via principal component analysis (PCA) and geographic information system (GIS) application to understand the changing behaviors of PTMs in groundwater. The average concentrations of physicochemical parameters such as pH, EC, TDS, ORP and Temperature were 7.1, 418 µS/cm, 251 mg/L, 193 mV and 25.7 ○C, while the concentrations of PTMs; Ni, Mn, Cr, Cu, Cd, Pb, Co, Fe and Zn were 0.25, 0.34, 0.09, 0.29, 0.10, 0.08, 0.10, 0.83 and 0.25  mg/L, respectively. Among the selected metals, Mn, Cr, Cd, Pb, Co and Fe were exceeded the WHO guidelines and their percentage contribution were 43%, 57%, 45%, 70%, 70% and 62%, respectively. The increasing order of PTMs were; Pb > Co > Fe > Cr > Cd > Mn > Cu > Ni > Zn in the study area. PCA represented three significant factors, which explained 76% variability in the groundwater. Whereas, clustering analysis (CA) grouped groundwater into three distinct clusters less polluted (C1), moderate polluted (C2) and highly polluted (C3). Human health risk assessment was carried out to check the suitability of groundwater for drinking and domestic uses. The HQ and HRIs values of Cd were >1, suggested that the groundwater sources are unfit for drinking and domestic purposes and may be caused potential health risk after long term ingestion.


Subject(s)
Geographic Information Systems , Groundwater/chemistry , Metals, Heavy/toxicity , Risk Assessment , Environmental Monitoring/methods , Environmental Pollution , Humans , Multivariate Analysis , Pakistan , Water Pollutants, Chemical/toxicity , Water Quality
8.
Sci Total Environ ; 635: 203-215, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-29660723

ABSTRACT

This study investigated the fluoride (F-) concentrations and physicochemical parameters of the groundwater in a fluorite mining area of the flood plain region of the River Swat, with particular emphasis on the fate and distribution of F- and the hydrogeochemistry. To better understand the groundwater hydrochemical profile and F- enrichment, groundwater samples (n=53) were collected from shallow (24-40m), mid-depth (48-65m) and deep (85-120m) aquifers, and then analysed using an ion-selective electrode. The lowest F- concentration (0.7mg/L) was recorded in the deep-aquifer groundwater, while the highest (6.4mg/L) was recorded in shallow groundwater. Most groundwater samples (62.2%) exceeded the guideline (1.5mg/L) set by the World Health Organization (WHO); while for individual sources, 73% of shallow-groundwater samples (F- concentration up to 6.4mg/L), 42% of mid-depth-groundwater samples, and 17% of deep-groundwater samples had F- concentrations that exceeded this permissible limit. Assessment of the overall quality of the groundwater revealed influences of the weathering of granite and gneisses rocks, along with silicate minerals and ion exchange processes. Hydrogeochemical analysis of the groundwater showed that Na+ is the dominant cation and HCO3- the major anion. The anionic and cationic concentrations across the entire study area increased in the following order: HCO3>SO4>Cl>NO3>F>PO4 and Na>Ca>Mg>K, respectively. Relatively higher F- toxicity levels were associated with the NaHCO3 water type, and the chemical facies were found to change from the CaHCO3 to (NaHCO3) type in calcium-poor aquifers. Thermodynamic considerations of saturation indices indicated that fluorite minerals play a vital role in the prevalence of fluorosis, while under-saturation revealed that - besides fluorite minerals - other F- minerals that are also present in the region further increase the F- concentrations in the groundwater. Finally, a health risk assessment via Dean's classification method identified that the groundwater with relatively higher F- concentrations is unfit for drinking purposes.


Subject(s)
Environmental Monitoring , Fluorides/analysis , Groundwater/analysis , Rivers/chemistry , Mining , Pakistan
SELECTION OF CITATIONS
SEARCH DETAIL
...