Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 13(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34210038

ABSTRACT

The intestinal microbiome may trigger celiac disease (CD) in individuals with a genetic disposition when exposed to dietary gluten. Research demonstrates that nutrition during infancy is crucial to the intestinal microbiome engraftment. Very few studies to date have focused on the breast milk composition of subjects with a history of CD on a gluten-free diet. Here, we utilize a multi-omics approach with shotgun metagenomics to analyze the breast milk microbiome integrated with metabolome profiling of 36 subjects, 20 with CD on a gluten-free diet and 16 healthy controls. These analyses identified significant differences in bacterial and viral species/strains and functional pathways but no difference in metabolite abundance. Specifically, three bacterial strains with increased abundance were identified in subjects with CD on a gluten-free diet of which one (Rothia mucilaginosa) has been previously linked to autoimmune conditions. We also identified five pathways with increased abundance in subjects with CD on a gluten-free diet. We additionally found four bacterial and two viral species/strains with increased abundance in healthy controls. Overall, the differences observed in bacterial and viral species/strains and in functional pathways observed in our analysis may influence microbiome engraftment in neonates, which may impact their future clinical outcomes.


Subject(s)
Celiac Disease/microbiology , Diet, Gluten-Free , Metabolome , Microbiota , Milk, Human/microbiology , Adult , Case-Control Studies , Celiac Disease/diet therapy , Cross-Sectional Studies , Female , Glutens/metabolism , Humans , Infant, Newborn , Metabolomics , Metagenomics , Prospective Studies
2.
Genome Announc ; 6(10)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29519847

ABSTRACT

We report here the first draft genome sequence of the non-O1/non-O139 Vibrio cholerae strain VcN1, isolated from Dhaka, Bangladesh. The data submitted to GenBank for this strain will contribute to advancing our understanding of this environmentally disseminated bacterium, including its virulence and its evolution as an important pathogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...