Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 9(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38131959

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by the hyperproliferation and aberrant differentiation of epidermal keratinocytes. It is a debilitating condition that can cause significant physical and emotional distress. Natural anti-psoriatic agents have been investigated as alternatives to conventional allopathic medications, as they have notable limitations and drawbacks. Curcumin and tea tree oil are cost-efficient and effective anti-inflammatory medicines with less adverse effects compared to synthetic psoriasis medications. Our research endeavors to harness the therapeutic potential of these natural compounds by developing an herbal anti-psoriatic topical drug delivery system. This novel method uses curcumin and tea tree oil to create a bi-phasic emulgel drug delivery system. Formulations F1 (gel) and F2 (emulgel) have high drug content percentages of 84.2% and 96.7%, respectively. The emulgel showed better spreadability for cutaneous applications, with a viscosity of 92,200 ± 943 cp compared to the gel's 56,200 ± 1725 cp. The emulgel released 94.48% of the drugs, compared to 87.58% for the gel. These formulations conform to the zero-order and Higuchi models, and their stability over a three-month period is crucial. In vivo, the emulgel healed psoriasis symptoms faster than the usual gel. The gathered results confirmed the emulgel's potential as a drug delivery method, emphasizing the complementary benefits of tea tree oil and curcumin as an effective new therapy for psoriasis.

2.
Micromachines (Basel) ; 14(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38138323

ABSTRACT

The study delves into the multifaceted potential of quercetin (Qu), a phytoconstituent found in various fruits, vegetables, and medicinal plants, in combination with silver nanoparticles (AgNPs). The research explores the synthesis and characterization of AgNPs loaded with Qu and investigates their pharmaceutical applications, particularly focusing on antibacterial properties. The study meticulously evaluates Qu's identity, and physicochemical properties, reaffirming its suitability for pharmaceutical use. The development of Qu-loaded AgNPs demonstrates their high drug entrapment efficiency, ideal particle characteristics, and controlled drug release kinetics, suggesting enhanced therapeutic efficacy and reduced side effects. Furthermore, the research examines the antibacterial activity of Qu in different solvents, revealing distinct outcomes. Qu, both in methanol and water formulations, exhibits antibacterial activity against Escherichia coli, with the methanol formulation displaying a slightly stronger efficacy. In conclusion, this study successfully synthesizes AgNPs loaded with Qu and highlights their potential as a potent antibacterial formulation. The findings underscore the influence of solvent choice on Qu's antibacterial properties and pave the way for further research and development in drug delivery systems and antimicrobial agents. This innovative approach holds promise for addressing microbial resistance and advancing pharmaceutical formulations for improved therapeutic outcomes.

3.
Saudi Pharm J ; 31(12): 101843, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37961069

ABSTRACT

Trigonelline, an alkaloid found in the seeds of Trigonella foenum-graecum L. (fenugreek), has been recognized for its potential in treating various diseases. Notably, trigonelline has demonstrated a neuroprotective impact by reducing intrasynaptosomal calcium levels, inhibiting the production of reactive oxygen species (ROS), and regulating cytokines. Kainic acid, an agonist of kainic acid receptors, is utilized for inducing temporal lobe epilepsy and is a common choice for establishing kainic acid-induced status epilepticus, a widely used epileptic model. The neuroprotective effect of trigonelline in the context of kainic acid-induced epilepsy remains unexplored. This study aimed to induce epilepsy by administering kainic acid (10 mg/kg, single subcutaneous dose) and subsequently evaluate the potential anti-epileptic effect of trigonelline (100 mg/kg, intraperitoneal administration for 14 days). Ethosuccimide (ETX) (187.5 mg/kg) served as the standard drug for comparison. The anti-epileptic effect of trigonelline over a 14-day administration period was examined. Behavioral assessments, such as the Novel Object Recognition (NOR) test, Open Field Test (OFT), and Plus Maze tests, were conducted 2 h after kainic acid administration to investigate spatial and non-spatial acquisition abilities in rats. Additionally, biochemical analysis encompassing intrasynaptosomal calcium levels, LDH activity, serotonin levels, oxidative indicators, and inflammatory cytokines associated with inflammation were evaluated. Trigonelline exhibited significant behavioral improvements by reducing anxiety in open field and plus maze tests, along with an amelioration of memory impairment. Notably, trigonelline substantially lowered intrasynaptosomal calcium levels and LDH activity, indicating its neuroprotective effect by mitigating cytotoxicity and neuronal injury within the hippocampus tissue. Moreover, trigonelline demonstrated a remarkable reduction in inflammatory cytokines and oxidative stress indicators. In summary, this study underscores the potential of trigonelline as an anti-epileptic agent in the context of kainic acid-induced epilepsy. The compound exhibited beneficial effects on behavior, neuroprotection, and inflammation, shedding light on its therapeutic promise for epilepsy management.

4.
Gels ; 9(11)2023 Nov 12.
Article in English | MEDLINE | ID: mdl-37998984

ABSTRACT

Dermatophytosis, the most prevalent fungal infection, is witnessing a rising incidence annually. To address this challenge, we developed a terbinafine-loaded oil-in-water nanoemulsion (TH-NE) through the aqueous microtitration method. The formulation comprised olive oil (oil phase), Span 80 (surfactant), and propylene glycol (co-surfactant). Pseudo-phase ternary diagrams and thermodynamic studies underscored the stability of TH-NE. Employing the Box-Behnken design (BBD), we optimized TH-NE, which resulted in a remarkable particle size of 28.07 nm ± 0.5, a low polydispersity index (PDI) of 0.1922 ± 0.1, and a substantial negative zeta potential of -41.87 mV ± 1. Subsequently, TH-NE was integrated into a 1.5% carbopol matrix, yielding a nanoemulgel (TH-NEG). Texture analysis of TH-NEG demonstrated a firmness of 168.00 g, a consistency of 229.81 g/s, negative cohesiveness (-83.36 g), and a work of cohesion at -107.02 g/s. In vitro drug release studies revealed an initial burst effect followed by sustained release, with TH-NEG achieving an impressive 88% release over 48 h, outperforming TH-NE (74%) and the marketed formulation (66%). Ex vivo release studies mirrored these results, with TH-NEG (86%) and TH-NE (71%) showcasing sustained drug release in comparison to the marketed formulation (67%). Confocal microscopy illustrated that TH-NEG and TH-NE penetrated to depths of 30 µm and 25 µm, respectively, into the epidermal layer. Furthermore, dermatokinetic studies highlighted the enhanced drug penetration of TH-NEG compared to TH-NE through mouse skin. In summary, our study establishes TH-NEG as a promising carrier for terbinafine in treating dermatophytosis, offering improved drug delivery and sustained release potential.

5.
Gels ; 9(2)2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36826282

ABSTRACT

Psoriasis, due to its unique pathological manifestations and the limited success of existing therapeutic modalities, demands dedicated domain research. Our group has developed nanotherapeutics consisting of bioactives such as Thymoquinone (TQ) and Fulvic acid (FA), which have been successfully incorporated into a Nanoemulsion gel (NEG), taking kalonji oil as oil phase. The composition is aimed at ameliorating psoriasis with better therapeutic outcomes. TQ is a natural bio-active that has been linked to anti-psoriatic actions. FA has anti-inflammatory actions due to its free radical and oxidant-scavenging activity. Our previous publication reports the formulation development of the NEG, where we overcame the pharmaco-technical limitations of combining the above two natural bioactives. In vitro evaluation of the optimized NEG was carried out, which showed an enhanced dissolution rate and skin permeation of TQ. This work furthers the pharmaceutical progression of dual-targeted synergistic NEG to treat psoriasis. A suitable animal model, BALB/c mice, has been used to conduct the in vivo studies, which revealed the effective anti-psoriatic action of TQ. Molecular docking studies corroborated the results and revealed a good binding affinity for both the targets of TNF-α (Tumor necrosis factor) and IL-6 (Interlukin-6). Tissue uptake by Confocal laser scanning microscopy (CLSM), a skin interaction study of the gel formulation, and an antioxidant free radical scavenging assay (1-1 Diphenyl-2-picrylhydrazyl DPPH) were also carried out. It was concluded that the NEG may be effective in treating psoriasis with minimal side effects.

6.
Gels ; 8(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36354641

ABSTRACT

Thymoquinone has a multitude of pharmacological effects and has been researched for a wide variety of indications, but with limited clinical success. It is associated with pharmaco-technical caveats such as hydrophobicity, high degradation, and a low oral bioavailability. A prudent approach warrants its usage through an alternative dermal route in combination with functional excipients to harness its potential for treating dermal afflictions, such as psoriasis. Henceforth, the present study explores a nanoformulation approach for designing a fulvic acid (peat-sourced)-based thymoquinone nanoemulsion gel (FTQ-NEG) for an enhanced solubility and improved absorption. The excipients, surfactant/co-surfactant, and oil selected for the o/w nanoemulsion (FTQ-NE) are Tween 80/Transcutol-P and kalonji oil. The formulation methodology includes high-energy ultrasonication complemented with a three-dimensional/factorial Box-Behnken design for guided optimization. The surface morphology assessment through scanning/transmission electron microscopy and fluorescence microscopy revealed a 100 nm spherical, globule-like structure of the prepared nanoemulsion. Furthermore, the optimized FTQ-NE had a zeta potential of -2.83 ± 0.14 Mv, refractive index of 1.415 ± 0.036, viscosity of 138.5 ± 3.08 mp, and pH of 5.8 ± 0.16, respectively. The optimized FTQ-NE was then formulated as a gel using Carbopol 971® (1%). The in vitro release analysis of the optimized FTQ-NEG showed a diffusion-dominant drug release (Higuchi model) for 48 h. The drug permeation flux observed for FTQ-NEG (3.64 µg/cm2/h) was much higher compared to that of the pure drug (1.77 mg/cm2/h). The results were further confirmed by confocal microscopy studies, which proved the improved penetration of thymoquinone through mice skin. Long-term stability studies of the purported formulation were also conducted and yielded satisfactory results.

7.
Saudi Pharm J ; 30(7): 879-905, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35645588

ABSTRACT

The SARS-CoV-2 (COVID 19) paroxysm is a dominant health exigency that caused significant distress, affecting physical and mental health. Increased mortality, a stressed healthcare system, financial crisis, isolation, and new living and working styles enhanced societal commiseration leading to poor health outcomes. Though people try to maintain good physical health but unfortunately the mental affliction is still ignored. Poor psychological health has emerged as a burgeoning social issue and demands attention. Henceforth, the fundamental objective of this review article is to collate information about COVID-linked physical and psychological agony in diverse population groups with related symptoms and accessible diagnosis techniques. Recent studies have unraveled the fragile mental states of people who have either contracted COVID 19 or had near and dear ones falling prey to it. The impact of the epidemic on the human mind both in short and long-term, with possible risk and preventive factors together with suggested solutions for maintaining good health have also been discussed here. It also enlists the available medications, vaccines and investigational research in the form of patents and clinical trials. This article can be taken as an updated information sheet for COVID 19, accompanied by its management techniques with special emphasis on coping strategies for mental health. Further, it may also assist the policymakers to devise approaches that could enable the public to overcome the pandemic-driven adversity not only in the given situation but also futuristically.

SELECTION OF CITATIONS
SEARCH DETAIL
...