Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioprocess Biosyst Eng ; 37(10): 2019-29, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24682264

ABSTRACT

High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same.


Subject(s)
Adaptation, Physiological , Ethanol/metabolism , Fermentation , Hot Temperature , Kluyveromyces/metabolism , Molasses , Biomass , Kluyveromyces/growth & development , Kluyveromyces/physiology , Solvents
2.
Springerplus ; 2(1): 159, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23710425

ABSTRACT

Ethanol production from sugarcane bagasse pith hydrolysate by thermotolerant yeast Kluyveromyces sp. IIPE453 was analyzed using response surface methodology. Variables such as Substrate Concentration, pH, fermentation time and Na2HPO4 concentration were found to influence ethanol production significantly. In a batch fermentation, optimization of key process variables resulted in maximum ethanol concentration of 17.44 g/L which was 88% of the theoretical with specific productivity of 0.36 g/L/h.

SELECTION OF CITATIONS
SEARCH DETAIL
...