Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pak J Pharm Sci ; 33(3): 1025-1032, 2020 May.
Article in English | MEDLINE | ID: mdl-33191226

ABSTRACT

This study aimed to evaluate and compare the antihepatotoxicity effect of Fagonia indica extract and its solid dispersion formulation (SD) against paracetamol-induced hepatotoxicity in rats. Dried Ethanolic plant extract was prepared by cold maceration in ethanol followed by solvent evaporation under reduced pressure. Quality control of crude extract was performed and the total phenolic and flavonoid contents were determined. Solid dispersion (SD) formulations were prepared by solvent evaporation technique and optimized with respect to drug solubility. Antihepatotoxicity activities of Fagonia indica extract and optimized solid dispersion were performed against paracetamol-induced hepatotoxicity in rats. Quality control parameters like total ash, acid insoluble ash, water soluble ash, crude fiber content and moisture content were within the acceptable limits. Total flavonoid and phenolic contents were found to be 31.289mg quercetin equivalents/g and 40.28mg gallic acid equivalent/g respectively. TLC Investigation of the plant extract revealed the presence of gallic acid, kaempferol and quarcetin. Optimized SD formulation with 200 mg of the dried extract, 350mg of PEG 4000 and 50mg of Tween 20 showed almost four-fold increasing in the solubility of the extract in water. The average hydrodynamic diameter of extract particles was reduced from 1972 nm to 437.6nm when prepared as SD. SD formulation showed highest antihepatotoxicity activity compared with plain plant extract at the same concentration. Optimized SD formulation at 500mg dose showed complete recovery from hepatotoxicity induced by paracetamol in rats. Therefore, SD is found to be one of the promising strategy to enhance the antihepatoxicity activity of Fagonia indica plant.


Subject(s)
Chemical and Drug Induced Liver Injury/prevention & control , Liver/drug effects , Plant Extracts/pharmacology , Protective Agents/pharmacology , Zygophyllaceae , Acetaminophen , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Disease Models, Animal , Dosage Forms , Drug Compounding , Liver/metabolism , Liver/pathology , Male , Plant Extracts/isolation & purification , Protective Agents/isolation & purification , Rats , Solubility , Zygophyllaceae/chemistry
2.
Biomed Res Int ; 2020: 1879125, 2020.
Article in English | MEDLINE | ID: mdl-32596281

ABSTRACT

Celecoxib (CXB) is a COX-2-selective nonsteroidal anti-inflammatory drug used to control pain and various inflammatory conditions. CXB has limited oral bioavailability and a slow dissociation rate due to its poor water solubility. In order to enhance the oral bioavailability of CXB and reduce the frequency of administration, the present study was aimed at enhancing the aqueous solubility of CXB by a cosolvency technique and then at formulating and evaluating a CXB in situ floating gelling system for sustained oral delivery. Three cosolvents, namely, PEG 600, propylene glycol, and glycerin, at different concentrations, were used to solubilize CXB. Particle size analysis was performed to confirm the solubility of CXB in the solutions. The floating in situ gel formulations were then prepared by the incorporation of the CXB solution into sodium alginate solutions (0.25, 0.5, and 1% w/v). Formulations, in sol form, were then in vitro characterized for their physical appearance, pH, and rheological behaviors, while formulations in gel form were evaluated for their floating behavior and in vitro drug release studies. FTIR spectroscopy was performed to examine drug-polymer interaction. The selected formula was evaluated biologically for its anti-inflammatory and analgesic activities. Results revealed that the less-polar solvent PEG 600 at 80% v/v had the highest solubilization potential, and it was used to optimize the in situ gel formulation. The candidate formula (F3) was found to have the highest sodium alginate concentration (1% w/v) and showed the optimum sustained release profile with the Higuchi model release kinetics. The results from the FTIR spectroscopy analysis showed noticeable drug-polymer molecular interaction. Moreover, F3 exhibited a significantly higher percentage of paw edema inhibition at 8 h compared with the reference drug (p < 0.05). Also, it showed a sustained duration of analgesia that persisted for the entire experimental time.


Subject(s)
Alginates/chemistry , Anti-Inflammatory Agents, Non-Steroidal , Celecoxib , Drug Delivery Systems/methods , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Behavior, Animal/drug effects , Biological Availability , Celecoxib/chemistry , Celecoxib/pharmacokinetics , Celecoxib/pharmacology , Delayed-Action Preparations , Edema , Female , Hindlimb/drug effects , Male , Rats , Rats, Wistar , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...