Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(6)2023 06 11.
Article in English | MEDLINE | ID: mdl-37372429

ABSTRACT

INDETERMINATE DOMAIN (IDD) proteins are plant-specific transcription factors that interact with GRAS proteins, such as DELLA and SHORT ROOT (SHR), to regulate target genes. The combination of IDD and DELLA proteins regulates genes involved in gibberellic acid (GA) synthesis and GA signaling, whereas the combination of IDD with the complex of SHR and SCARECROW, another GRAS protein, regulates genes involved in root tissue formation. Previous bioinformatic research identified seven IDDs, two DELLA, and two SHR genes in Physcomitrium patens, a model organism for non-vascular plants (bryophytes), which lack a GA signaling pathway and roots. In this study, DNA-binding properties and protein-protein interaction of IDDs from P. patens (PpIDD) were analyzed. Our results showed that the DNA-binding properties of PpIDDs were largely conserved between moss and seed plants. Four PpIDDs showed interaction with Arabidopsis DELLA (AtDELLA) proteins but not with PpDELLAs, and one PpIDD showed interaction with PpSHR but not with AtSHR. Moreover, AtIDD10 (JACKDAW) interacted with PpSHR but not with PpDELLAs. Our results indicate that DELLA proteins have modified their structure to interact with IDD proteins during evolution from moss lineage to seed plants, whereas the interaction of IDD and SHR was already present in moss lineage.


Subject(s)
Arabidopsis , Bryopsida , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/metabolism , Plants/genetics , Signal Transduction/physiology , Bryopsida/genetics , DNA/metabolism
2.
Polymers (Basel) ; 14(7)2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35406172

ABSTRACT

Increasingly prevalent respiratory infectious diseases (e.g., COVID-19) have posed severe threats to public health. Viruses including coronavirus, influenza, and so on can cause respiratory infections. A pandemic may potentially emerge owing to the worldwide spread of the virus through persistent human-to-human transmission. However, transmission pathways may vary; respiratory droplets or airborne virus-carrying particles can have a key role in transmitting infections to humans. In conjunction with social distancing, hand cleanliness, and other preventative measures, the use of face masks is considered to be another scientific approach to combat ubiquitous coronavirus. Different types of face masks are produced using a range of materials (e.g., polypropylene, polyacrylonitrile, polycarbonate, polyurethane, polystyrene, polyester and polyethylene) and manufacturing techniques (woven, knitted, and non-woven) that provide different levels of protection to the users. However, the efficacy and proper disposal/management of the used face masks, particularly the ones made of non-biodegradable polymers, pose great environmental concerns. This review compiles the recent advancements of face masks, covering their requirements, materials and techniques used, efficacy, challenges, risks, and sustainability towards further enhancement of the quality and performance of face masks.

3.
Polymers (Basel) ; 14(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35267694

ABSTRACT

This paper presents the formulation, characterization, and in vitro studies of polymer composite material impregnated with naturally derived hydroxyapatite (HA) particulates for biomedical implant applications. Laevistrombus canarium (LC) seashells (SS) were collected, washed and cleaned, sun-dried for 24 h, and ground into powder particulates. The SS particulates of different weight percentages (0, 10, 20, 30, 40, 50 wt%)-loaded high-density polyethylene (HDPE) composites were fabricated by compression molding for comparative in vitro assessment. A temperature-controlled compression molding technique was used with the operating pressure of 2 to 3 bars for particulate retention in the HDPE matrix during molding. The HDPE/LC composite was fabricated and characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), differential scanning calorimetry (DSC), and TGA. Mechanical properties such as tensile, compression, flexural, hardness, and also surface roughness were tested as per ASTM standards. Mass degradation and thermal stability of the HDPE/LC composite were evaluated at different temperatures ranging from 10 to 700 °C using thermogravimetric analysis (TGA). The maximum tensile strength was found to be 27 ± 0.5 MPa for 30 wt% HDPE/LC composite. The thermal energy absorbed during endothermic processes was recorded as 71.24 J/g and the peak melting temperature (Tm) was found to be 128.4 °C for the same 30 wt% of HDPE/LC composite specimen. Excellent cell viability was observed during the in vitro biocompatibility study for EtO-sterilized 30 wt% of HDPE/LC composite specimen, except for a report of mild cytotoxicity in the case of higher concentration (50 µL) of the MG-63 cell line. The results demonstrate the potential of the fabricated composite as a suitable biomaterial for medical implant applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...