Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Lipid Res ; 56(12): 2260-72, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26416795

ABSTRACT

Hepatic steatosis is characterized by the accumulation of lipid droplets (LDs), which are composed of a neutral lipid core surrounded by a phospholipid monolayer embedded with many proteins. Although the LD-associated proteome has been investigated in multiple tissues and organisms, the dynamic changes in the murine LD-associated proteome in response to obesity and hepatic steatosis have not been studied. We characterized the hepatic LD-associated proteome of C57BL/6J male mouse livers following high-fat feeding using isobaric tagging for relative and absolute quantification. Of the 1,520 proteins identified with a 5% local false discovery rate, we report a total of 48 proteins that were increased and 52 proteins that were decreased on LDs in response to high-fat feeding. Most notably, ribosomal and endoplasmic reticulum proteins were increased and extracellular and cytosolic proteins were decreased in response to high-fat feeding. Additionally, many proteins involved in fatty acid catabolism or xenobiotic metabolism were enriched in the LD fraction following high-fat feeding. In contrast, proteins involved in glucose metabolism and liver X receptor or retinoid X receptor activation were decreased on LDs of high-fat-fed mice. This study provides insights into unique biological functions of hepatic LDs under normal and steatotic conditions.


Subject(s)
Fatty Liver/metabolism , Lipid Droplets/metabolism , Proteome/metabolism , Animals , Lipid Metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL
2.
Diabetes ; 64(2): 418-26, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25614670

ABSTRACT

Sirtuin 1 (SIRT1), an NAD(+)-dependent protein deacetylase, regulates a host of target proteins, including peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), a transcriptional coregulator that binds to numerous transcription factors in response to deacetylation to promote mitochondrial biogenesis and oxidative metabolism. Our laboratory and others have shown that adipose triglyceride lipase (ATGL) increases the activity of the nuclear receptor PPAR-α, a PGC-1α binding partner, to promote fatty acid oxidation. Fatty acids bind and activate PPAR-α; therefore, it has been presumed that fatty acids derived from ATGL-catalyzed lipolysis act as PPAR-α ligands. We provide an alternate mechanism that links ATGL to PPAR-α signaling. We show that SIRT1 deacetylase activity is positively regulated by ATGL to promote PGC-1α signaling. In addition, ATGL mediates the effects of ß-adrenergic signaling on SIRT1 activity, and PGC-1α and PPAR-α target gene expression independent of changes in NAD(+). Moreover, SIRT1 is required for the induction of PGC-1α/PPAR-α target genes and oxidative metabolism in response to increased ATGL-mediated lipolysis. Taken together, this work identifies SIRT1 as a critical node that links ß-adrenergic signaling and lipolysis to changes in the transcriptional regulation of oxidative metabolism.


Subject(s)
Lipase/metabolism , PPAR alpha/metabolism , Signal Transduction/physiology , Sirtuin 1/metabolism , Transcription Factors/metabolism , Animals , Cells, Cultured , Gene Expression Regulation , Hepatocytes/metabolism , Lipase/genetics , Lipolysis/physiology , Male , Mice , PPAR alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sirtuin 1/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...