Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 7(10): 2876-2888, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34478259

ABSTRACT

Tetrahydrolipstatin (THL, 1a) has been shown to inhibit both mammalian and bacterial α/ß hydrolases. In the case of bacterial systems, THL is a known inhibitor of several Mycobacterium tuberculosis hydrolases involved in mycomembrane biosynthesis. Herein we report a highly efficient eight-step asymmetric synthesis of THL using a route that allows modification of the THL α-chain substituent to afford compounds 1a through 1e. The key transformation in the synthesis was use of a (TPP)CrCl/Co2(CO)8-catalyzed regioselective and stereospecific carbonylation on an advanced epoxide intermediate to yield a trans-ß-lactone. These compounds are modest inhibitors of Ag85A and Ag85C, two α/ß hydrolases of M. tuberculosis involved in the biosynthesis of the mycomembrane. Among these compounds, 10d showed the highest inhibitory effect on Ag85A (34 ± 22 µM) and Ag85C (66 ± 8 µM), and its X-ray structure was solved in complex with Ag85C to 2.5 Å resolution. In contrast, compound 1e exhibited the best-in-class MICs of 50 µM (25 µg/mL) and 16 µM (8.4 µg/mL) against M. smegmatis and M. tuberculosis H37Ra, respectively, using a microtiter assay plate. Combination of 1e with 13 well-established antibiotics synergistically enhanced the potency of few of these antibiotics in M. smegmatis and M. tuberculosis H37Ra. Compound 1e applied at concentrations 4-fold lower than its MIC enhanced the MIC of the synergistic antibiotic by 2-256-fold. In addition to observing synergy with first-line drugs, rifamycin and isoniazid, the MIC of vancomycin against M. tuberculosis H37Ra was 65 µg/mL; however, the MIC was lowered to 0.25 µg/mL in the presence of 2.1 µg/mL 1e demonstrating the potential of targeting mycobacterial hydrolases involved in mycomembrane and peptidoglycan biosynthesis.


Subject(s)
Mycobacterium tuberculosis , Animals , Antitubercular Agents/pharmacology , Isoniazid , Microbial Sensitivity Tests , Orlistat
SELECTION OF CITATIONS
SEARCH DETAIL
...