Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 19(6): e0304876, 2024.
Article in English | MEDLINE | ID: mdl-38848336

ABSTRACT

We have identified an acyl-carrier protein, Rv0100, that is up-regulated in a dormancy model. This protein plays a critical role in the fatty acid biosynthesis pathway, which is important for energy storage and cell wall synthesis in Mycobacterium tuberculosis (MTB). Knocking out the Rv0100 gene resulted in a significant reduction of growth compared to wild-type MTB in the Wayne model of non-replicating persistence. We have also shown that Rv0100 is essential for the growth and survival of this pathogen during infection in mice and a macrophage model. Furthermore, knocking out Rv0100 disrupted the synthesis of phthiocerol dimycocerosates, the virulence-enhancing lipids produced by MTB and Mycobacterium bovis. We hypothesize that this essential gene contributes to MTB virulence in the state of latent infection. Therefore, inhibitors targeting this gene could prove to be potent antibacterial agents against this pathogen.


Subject(s)
Acyl Carrier Protein , Bacterial Proteins , Mycobacterium tuberculosis , Animals , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Mice , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Acyl Carrier Protein/metabolism , Acyl Carrier Protein/genetics , Macrophages/microbiology , Macrophages/metabolism , Virulence , Gene Expression Regulation, Bacterial , Tuberculosis/microbiology , Lipids/chemistry
2.
ACS Infect Dis ; 9(8): 1593-1601, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37450563

ABSTRACT

For over a century, researchers have cultured microorganisms together on solid support─typically agar─in order to observe growth inhibition via antibiotic production. These simple bioassays have been critical to both academic researchers that study antibiotic production in microorganisms and to the pharmaceutical industry's global effort to discover drugs. Despite the utility of agar assays to researchers around the globe, several limitations have prevented their widespread adoption in advanced high-throughput compound discovery and dereplication campaigns. To address a list of specific shortcomings, we developed the dual-sided agar plate assay (DAPA), which exists in a 96-well plate format, allows microorganisms to compete through opposing sides of a solid support in individual wells, is amenable to high-throughput screening and automation, is reusable, and is low-cost. Herein, we validate the use of DAPA as a tool for drug discovery and show its utility to discover new antibiotic natural products. From the screening of 217 bacterial isolates on multiple nutrient media against 3 pathogens, 55 hits were observed, 9 known antibiotics were dereplicated directly from agar plugs, and a new antibiotic, demethoxytetronasin (1), was isolated from a Streptomyces sp. These results demonstrate that DAPA is an effective, accessible, and low-cost tool to screen, dereplicate, and prioritize bacteria directly from solid support in the front end of antibiotic discovery pipelines.


Subject(s)
Anti-Bacterial Agents , Biological Products , Anti-Bacterial Agents/pharmacology , Agar , High-Throughput Screening Assays/methods , Drug Discovery
SELECTION OF CITATIONS
SEARCH DETAIL