Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Adv Pharm Technol Res ; 14(1): 18-23, 2023.
Article in English | MEDLINE | ID: mdl-36950466

ABSTRACT

Osteosarcoma is a common primary malignant bone tumor that typically manifests in the second decade of life. This study aimed to identify osteogenic compounds that potentially serve as multitarget inhibitors for osteosarcoma. The study was a molecular docking study of nine Food and Drug Administration-approved compounds with osteogenic properties to the key membrane proteins of osteosarcoma. The ligands used were raloxifene, simvastatin, dexamethasone, risedronate, ibandronate, zoledronic acid, ascorbic acid, alendronate, and ß-glycerophosphate, whereas the target proteins used were RET, fibroblast growth factor receptor 1, KIT, PDGFRA, VEGFR1, and VEGFR2. Chem3D version 15.0.0.106 was used for ligand preparation, and AutoDockTools version 1.5.6 was used for protein preparation, whereas molecular docking was conducted using AutoDock Vina. Raloxifene, simvastatin, and dexamethasone had the lowest binding activity to the target proteins. The binding affinity of raloxifene was from -8.4 to -10.0 kcal mol-1, that of simvastatin was -8.3 to -9.2 kcal mol-1, whereas dexamethasone ranged from -6.9 to -9.1 kcal mol-1. Most types of interactions were hydrophobically followed by hydrogen bonding. The current study suggests that raloxifene, simvastatin, and dexamethasone have the potential to act as multitarget inhibitors for osteosarcoma with the ability to induce bone remodeling.

2.
BMC Biotechnol ; 19(Suppl 2): 94, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31847853

ABSTRACT

BACKGROUND: The Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is an important polyphagous pest of horticultural produce. The sterile insect technique (SIT) is a proven control method against many insect pests, including fruit flies, under area-wide pest management programs. High quality mass-rearing process and the cost-effective production of sterile target species are important for SIT. Irradiation is reported to cause severe damage to the symbiotic community structure in the mid gut of fruit fly species, impairing SIT success. However, studies have found that target-specific manipulation of insect gut bacteria can positively impact the overall fitness of SIT-specific insects. RESULTS: Twelve bacterial genera were isolated and identified from B. dorsalis eggs, third instars larval gut and adults gut. The bacterial genera were Acinetobacter, Alcaligenes, Citrobacter, Pseudomonas, Proteus, and Stenotrophomonas, belonging to the Enterobacteriaceae family. Larval diet enrichment with the selected bacterial isolate, Proteus sp. was found to improve adult emergence, percentage of male, and survival under stress. However, no significant changes were recorded in B. dorsalis egg hatching, pupal yield, pupal weight, duration of the larval stage, or flight ability. CONCLUSIONS: These findings support the hypothesis that gut bacterial isolates can be used in conjunction with SIT. The newly developed gel-based larval diet incorporated with Proteus sp. isolates can be used for large-scale mass rearing of B. dorsalis in the SIT program.


Subject(s)
Animal Feed/microbiology , Bacteria/classification , RNA, Ribosomal, 16S/genetics , Tephritidae/physiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Female , Gastrointestinal Microbiome , Insect Control , Larva/microbiology , Larva/physiology , Male , Sexual Behavior, Animal , Tephritidae/microbiology
3.
Biocontrol Sci ; 20(2): 115-23, 2015.
Article in English | MEDLINE | ID: mdl-26133509

ABSTRACT

Bactrocera cucurbitae (melon fruit fly) is one of the most detrimental vegetable-damaging pests in Bangladesh. The toxicity of Bacillus thuringiensis (Bt) has been reported against a few genera of Bactrocera in addition to numerous other insect species. Bt strains, harbouring cry1A-type genes were, therefore, assayed in vivo against the 3(rd) instar larvae of B. cucurbitae in this study. The biotype-based prevalence of cry1 and cry1A genes was calculated to be 30.8% and 11.16%, respectively, of the test strains (n=224) while their prevalence was greatest in biotype kurstaki. Though three indigenous Bt strains from biotype kurstaki with close genetic relationship exhibited higher toxicity, maximum mortalities were recorded for Btk HD-73 (96%) and the indigenous Bt JSc1 (93%). LC50 and LC99 values were determined to be 6.81 and 8.32 for Bt JSc1, 7.30 and 7.92 for Bt SSc2, and 6.99 and 7.67 for Btk HD-73, respectively. The cause of toxicity and its variation among the strains was found to be correlated with the synergistic toxic effects of cry1, cry2, cry3 and cry9 gene products, i.e. relevant Cry proteins. The novel toxicity of the B. thuringiensis strains against B. cucurbitae revealed in the present study thus will help in developing efficient and eco-friendly control measures such as Bt biopesticides and transgenic Bt cucurbits.


Subject(s)
Bacillus thuringiensis/growth & development , Bacillus thuringiensis/metabolism , Bacterial Proteins/toxicity , Endotoxins/toxicity , Hemolysin Proteins/toxicity , Tephritidae/microbiology , Tephritidae/physiology , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bangladesh , Cucurbitaceae/parasitology , Endotoxins/genetics , Hemolysin Proteins/genetics , Larva/microbiology , Larva/physiology , Pest Control, Biological/methods , Survival Analysis
4.
Acta Trop ; 132 Suppl: S2-11, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24252487

ABSTRACT

The enormous burden placed on populations worldwide by mosquito-borne diseases, most notably malaria and dengue, is currently being tackled by the use of insecticides sprayed in residences or applied to bednets, and in the case of dengue vectors through reduction of larval breeding sites or larviciding with insecticides thereof. However, these methods are under threat from, amongst other issues, the development of insecticide resistance and the practical difficulty of maintaining long-term community-wide efforts. The sterile insect technique (SIT), whose success hinges on having a good understanding of the biology and behaviour of the male mosquito, is an additional weapon in the limited arsenal against mosquito vectors. The successful production and release of sterile males, which is the mechanism of population suppression by SIT, relies on the release of mass-reared sterile males able to confer sterility in the target population by mating with wild females. A five year Joint FAO/IAEA Coordinated Research Project brought together researchers from around the world to investigate the pre-mating conditions of male mosquitoes (physiology and behaviour, resource acquisition and allocation, and dispersal), the mosquito mating systems and the contribution of molecular or chemical approaches to the understanding of male mosquito mating behaviour. A summary of the existing knowledge and the main novel findings of this group is reviewed here, and further presented in the reviews and research articles that form this Acta Tropica special issue.


Subject(s)
Biological Phenomena , Culicidae/genetics , Culicidae/physiology , Mosquito Control/methods , Pest Control, Biological/methods , Animals , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...