Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Cell ; 185(3): 467-484.e15, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35081335

ABSTRACT

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

2.
PNAS Nexus ; 1(4): pgac156, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36714848

ABSTRACT

Extracellular vesicles (EVs) transfer bioactive molecules between cells in a process reminiscent of enveloped viruses. EV cargo delivery is thought to occur by protein-mediated and pH-dependent membrane fusion of the EV and the cellular membrane. However, there is a lack of methods to identify the fusion proteins and resolve their mechanism. We developed and benchmarked an in vitro biophysical assay to investigate EV membrane fusion. The assay was standardized by directly comparing EV and viral fusion with liposomes. We show that EVs and retroviruses fuse with liposomes mimicking the membrane composition of the late endosome in a pH- and protein-dependent manner. Moreover, we directly visualize the stages of membrane fusion using cryo-electron tomography. We find that, unlike most retroviruses, EVs remain fusogenic after acidification and reneutralization. These results provide novel insights into the EV cargo delivery mechanism and an experimental approach to identify the EV fusion machinery.

3.
bioRxiv ; 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34981049

ABSTRACT

On the 24 th November 2021 the sequence of a new SARS CoV-2 viral isolate spreading rapidly in Southern Africa was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titres of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic as well as Alpha, Beta, Gamma, Delta are substantially reduced or fail to neutralize. Titres against Omicron are boosted by third vaccine doses and are high in cases both vaccinated and infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of a large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses, combining mutations conferring tight binding to ACE2 to unleash evolution driven by immune escape, leading to a large number of mutations in the ACE2 binding site which rebalance receptor affinity to that of early pandemic viruses.

5.
Nat Commun ; 11(1): 409, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31964869

ABSTRACT

The Golgi is a dynamic organelle whose correct assembly is crucial for cellular homeostasis. Perturbations in Golgi structure are associated with numerous disorders from neurodegeneration to cancer. However, whether and how dispersal of the Golgi apparatus is actively regulated under stress, and the consequences of Golgi dispersal, remain unknown. Here we demonstrate that 26S proteasomes are associated with the cytosolic surface of Golgi membranes to facilitate Golgi Apparatus-Related Degradation (GARD) and degradation of GM130 in response to Golgi stress. The degradation of GM130 is dependent on p97/VCP and 26S proteasomes, and required for Golgi dispersal. Finally, we show that perturbation of Golgi homeostasis induces cell death of multiple myeloma in vitro and in vivo, offering a therapeutic strategy for this malignancy. Taken together, this work reveals a mechanism of Golgi-localized proteasomal degradation, providing a functional link between proteostasis control and Golgi architecture, which may be critical in various secretion-related pathologies.


Subject(s)
Golgi Apparatus/metabolism , Ionophores/therapeutic use , Multiple Myeloma/drug therapy , Proteasome Endopeptidase Complex/metabolism , Proteostasis/physiology , Animals , Apoptosis/drug effects , Autoantigens/metabolism , Cell Line, Tumor/transplantation , Disease Models, Animal , Golgi Apparatus/drug effects , HEK293 Cells , Humans , Intracellular Membranes/metabolism , Ionophores/pharmacology , Membrane Proteins/metabolism , Mice , Monensin/pharmacology , Monensin/therapeutic use , Multiple Myeloma/pathology , Proteolysis/drug effects , Proteostasis/drug effects , Ubiquitination/drug effects , Valosin Containing Protein/metabolism
6.
J Org Chem ; 81(8): 3149-60, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26999637

ABSTRACT

The synthesis of hitherto unreported S-alkyl/aryl benzothiazole-2-carbothioate is reported from thiols, oxalyl chloride, and 2-aminothiophenols using 10 mol % n-tetrabutylammonium iodide (TBAI) as catalyst in acetonitrile through multicomponent reaction (MCR) strategy. The present protocol favored formation of benzothiazoles and thioesters via simultaneous formation of C-N and C-S bonds in good yields with a wide range of substrates. A few of the synthesized derivatives were evaluated for their antimicrobial activity against the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL). Further, these compounds displayed no toxicity toward macrophage RAW 264.7 cells and are therefore nontoxic and effective antileishmanial leads. In silico docking studies were performed to understand the possible binding site interaction with trypanothione reductase (TryR).


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/pharmacology , Leishmania donovani/drug effects , Macrophages/drug effects , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/drug effects , Sulfhydryl Compounds/chemistry , Antiprotozoal Agents/chemistry , Benzothiazoles/chemistry , Binding Sites , Leishmania donovani/enzymology , Leishmaniasis, Visceral/enzymology , NADH, NADPH Oxidoreductases/metabolism , Ornithine Decarboxylase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...