Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inflammopharmacology ; 31(5): 2571-2585, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37432554

ABSTRACT

Cerium oxide nanoparticles (CONPs), owing to their radical scavenging property, have recently emerged as a therapeutic candidate for oxidative stress-mediated neurological diseases. However, oral and intravenous administration of CONPs is limited due to their poor physicochemical characteristics, low bioavailability, rapid systemic clearance, poor blood-brain penetration and dose-dependent toxicity. To overcome these challenges, we developed intranasal CONPs and evaluated their potential in the experimental PD model. CONPs were prepared by homogenous precipitation using tween 80 as a stabilizer and methanol/water as solvent. The optimization was done using Central Composite Design (CCD). The CONPs synthesis was confirmed by UV and FTIR. The optimized CONPs were small-sized (105.1 ± 5.78 nm), spherical (TEM), uniform (PDI, 0.119 ± 0.006) and stable (ZP, -22.7 ± 1.02 mV). Energy-dispersive X-ray analysis showed characteristic signals of Ce in developed CONPs. The X-ray diffraction pattern described the cubic fluorite structure and nano-crystalline nature of CONPs. The CONP anti-oxidant activity was found to be 93.60 ± 0.32% at 25 µg/mL concentration. Finally, motor manifestation studies like the forced swim test, locomotor test, akinesia, catalepsy, and muscle coordination test were conducted to assess the motor dysfunctions and behavioral activity in all four animal groups. Results of the in vivo motor manifestation studies in the haloperidol-induced PD rat model showed that co-administration of intranasal CONPs along with a half dose of levodopa resulted in significant protection, and results were significantly different from the untreated group but not significantly different from the healthy group. In conclusion, intranasal CONPs can be useful in ameliorating oxidative stress through their antioxidant effect and could be prospective therapeutics for the treatment of motor manifestations in Parkinson's disease.


Subject(s)
Nanoparticles , Parkinsonian Disorders , Rats , Animals , Haloperidol/pharmacology , Oxidative Stress
2.
Front Pharmacol ; 14: 1188470, 2023.
Article in English | MEDLINE | ID: mdl-37324485

ABSTRACT

Introduction: Cerium oxide nanoparticles (CONPs) have been investigated for their therapeutic potential in Parkinson's disease (PD) due to their potent and regenerative antioxidant activity. In the present study, CONPs were used to ameliorate the oxidative stress caused by free radicals in haloperidol-induced PD in rats following intranasal administration. Method: The antioxidant potential of the CONPs was evaluated in vitro using ferric reducing antioxidant power (FRAP) assay. The penetration and local toxicity of the CONPs was evaluated ex-vivo using goat nasal mucosa. The acute local toxicity of intranasal CONPs was also studied in rat. Gamma scintigraphy was used to assess the targeted brain delivery of CONPs. Acute toxicity studies were performed in rats to demonstrate safety of intranasal CONPs. Further, open field test, pole test, biochemical estimations and brain histopathology was performed to evaluate efficacy of intranasal CONPs in haloperidol-induced PD rat model. Results: The FRAP assay revealed highest antioxidant activity of prepared CONPs at a concentration of 25 µg/mL. Confocal microscopy showed deep and homogenous distribution of CONPs in the goat nasal mucus layers. No signs of irritation or injury were seen in goat nasal membrane when treated with optimized CONPs. Scintigraphy studies in rats showed targeted brain delivery of intranasal CONPs and acute toxicity study demonstrated safety. The results of open field and pole test showed highly significant (p < 0.001) improvement in locomotor activity of rats treated with intranasal CONPs compared to untreated rats. Further, brain histopathology of treatment group rats showed reduced neurodegeneration with presence of more live cells. The amount of thiobarbituric acid reactive substances (TBARS) was reduced significantly, whereas the levels of catalase (CAT), superoxide dismutase (SOD), and GSH were increased significantly, while amounts of interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) showed significant reduction after intranasal administration of CONPs. Also, the intranasal CONPs, significantly high (p < 0.001) dopamine concentration (13.93 ± 0.85 ng/mg protein) as compared to haloperidol-induced control rats (5.76 ± 0.70 ng/mg protein). Conclusion: The overall results concluded that the intranasal CONPs could be safe and effective therapeutics for the management of PD.

SELECTION OF CITATIONS
SEARCH DETAIL
...